scholarly journals An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics

2019 ◽  
Vol 69 (1) ◽  
pp. 155-183 ◽  
Author(s):  
Liangliang Wang ◽  
Shijia Wang ◽  
Alexandre Bouchard-Côté

Abstract We describe an “embarrassingly parallel” method for Bayesian phylogenetic inference, annealed Sequential Monte Carlo (SMC), based on recent advances in the SMC literature such as adaptive determination of annealing parameters. The algorithm provides an approximate posterior distribution over trees and evolutionary parameters as well as an unbiased estimator for the marginal likelihood. This unbiasedness property can be used for the purpose of testing the correctness of posterior simulation software. We evaluate the performance of phylogenetic annealed SMC by reviewing and comparing with other computational Bayesian phylogenetic methods, in particular, different marginal likelihood estimation methods. Unlike previous SMC methods in phylogenetics, our annealed method can utilize standard Markov chain Monte Carlo (MCMC) tree moves and hence benefit from the large inventory of such moves available in the literature. Consequently, the annealed SMC method should be relatively easy to incorporate into existing phylogenetic software packages based on MCMC algorithms. We illustrate our method using simulation studies and real data analysis.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Kai Xu ◽  
Yiwen Wang ◽  
Fang Wang ◽  
Yuxi Liao ◽  
Qiaosheng Zhang ◽  
...  

Sequential Monte Carlo estimation on point processes has been successfully applied to predict the movement from neural activity. However, there exist some issues along with this method such as the simplified tuning model and the high computational complexity, which may degenerate the decoding performance of motor brain machine interfaces. In this paper, we adopt a general tuning model which takes recent ensemble activity into account. The goodness-of-fit analysis demonstrates that the proposed model can predict the neuronal response more accurately than the one only depending on kinematics. A new sequential Monte Carlo algorithm based on the proposed model is constructed. The algorithm can significantly reduce the root mean square error of decoding results, which decreases 23.6% in position estimation. In addition, we accelerate the decoding speed by implementing the proposed algorithm in a massive parallel manner on GPU. The results demonstrate that the spike trains can be decoded as point process in real time even with 8000 particles or 300 neurons, which is over 10 times faster than the serial implementation. The main contribution of our work is to enable the sequential Monte Carlo algorithm with point process observation to output the movement estimation much faster and more accurately.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hisham M. Almongy ◽  
Ehab M. Almetwally ◽  
Randa Alharbi ◽  
Dalia Alnagar ◽  
E. H. Hafez ◽  
...  

This paper is concerned with the estimation of the Weibull generalized exponential distribution (WGED) parameters based on the adaptive Type-II progressive (ATIIP) censored sample. Maximum likelihood estimation (MLE), maximum product spacing (MPS), and Bayesian estimation based on Markov chain Monte Carlo (MCMC) methods have been determined to find the best estimation method. The Monte Carlo simulation is used to compare the three methods of estimation based on the ATIIP-censored sample, and also, we made a bootstrap confidence interval estimation. We will analyze data related to the distribution about single carbon fiber and electrical data as real data cases to show how the schemes work in practice.


Sign in / Sign up

Export Citation Format

Share Document