scholarly journals The Role of Idiothetic Signals, Landmarks, and Conjunctive Representations in the Development of Place and Head-Direction Cells: A Self-Organizing Neural Network Model

Author(s):  
Toby St. Clere Smithe ◽  
Simon M Stringer

Abstract Place and head-direction (HD) cells are fundamental to maintaining accurate representations of location and heading in the mammalian brain across sensory conditions, and are thought to underlie path integration—the ability to maintain an accurate representation of location and heading during motion in the dark. Substantial evidence suggests that both populations of spatial cells function as attractor networks, but their developmental mechanisms are poorly understood. We present simulations of a fully self-organizing attractor network model of this process using well-established neural mechanisms. We show that the differential development of the two cell types can be explained by their different idiothetic inputs, even given identical visual signals: HD cells develop when the population receives angular head velocity input, whereas place cells develop when the idiothetic input encodes planar velocity. Our model explains the functional importance of conjunctive “state-action” cells, implying that signal propagation delays and a competitive learning mechanism are crucial for successful development. Consequently, we explain how insufficiently rich environments result in pathology: place cell development requires proximal landmarks; conversely, HD cells require distal landmarks. Finally, our results suggest that both networks are instantiations of general mechanisms, and we describe their implications for the neurobiology of spatial processing.

2021 ◽  
Vol 292 ◽  
pp. 116912
Author(s):  
Rong Wang Ng ◽  
Kasim Mumtaj Begam ◽  
Rajprasad Kumar Rajkumar ◽  
Yee Wan Wong ◽  
Lee Wai Chong

2021 ◽  
Vol 15 ◽  
Author(s):  
Alejandro Rodríguez-Collado ◽  
Cristina Rueda

The complete understanding of the mammalian brain requires exact knowledge of the function of each neuron subpopulation composing its parts. To achieve this goal, an exhaustive, precise, reproducible, and robust neuronal taxonomy should be defined. In this paper, a new circular taxonomy based on transcriptomic features and novel electrophysiological features is proposed. The approach is validated by analysing more than 1850 electrophysiological signals of different mouse visual cortex neurons proceeding from the Allen Cell Types database. The study is conducted on two different levels: neurons and their cell-type aggregation into Cre lines. At the neuronal level, electrophysiological features have been extracted with a promising model that has already proved its worth in neuronal dynamics. At the Cre line level, electrophysiological and transcriptomic features are joined on cell types with available genetic information. A taxonomy with a circular order is revealed by a simple transformation of the first two principal components that allow the characterization of the different Cre lines. Moreover, the proposed methodology locates other Cre lines in the taxonomy that do not have transcriptomic features available. Finally, the taxonomy is validated by Machine Learning methods which are able to discriminate the different neuron types with the proposed electrophysiological features.


2021 ◽  
Author(s):  
Alejandro Rodríguez-Collado ◽  
Cristina Rueda

The complete understanding of the mammalian brain requires exact knowledge of the function of each of the neurons composing its parts. To achieve this goal, an exhaustive, precise, reproducible, and robust neuronal taxonomy should be defined. In this paper, a new circular taxonomy based on transcriptomic features and novel electrophysiological features is proposed. The approach is validated by analysing more than 1850 electrophysiological signals of different mouse visual cortex neurons proceeding from the Allen Cell Types Database. The study is conducted on two different levels: neurons and their cell-type aggregation into Cre Lines. At the neuronal level, electrophysiological features have been extracted with a promising model that has already proved its worth in neuronal dynamics. At the Cre Line level, electrophysiological and transcriptomic features are joined on cell types with available genetic information. A taxonomy with a circular order is revealed by a simple transformation of the first two principal components that allow the characterization of the different Cre Lines. Moreover, the proposed methodology locates other Cre Lines in the taxonomy that do not have transcriptomic features available. Finally, the taxonomy is validated by Machine Learning methods which are able to discriminate the different neuron types with the proposed electrophysiological features.


Sign in / Sign up

Export Citation Format

Share Document