attractor networks
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Anna Kutschireiter ◽  
Melanie A Basnak ◽  
Rachel I Wilson ◽  
Jan Drugowitsch

Efficient navigation requires animals to track their position, velocity and heading direction (HD). Bayesian inference provides a principled framework for estimating these quantities from unreliable sensory observations, yet little is known about how and where Bayesian algorithms could be implemented in the brain's neural networks. Here, we propose a class of recurrent neural networks that track both a dynamic HD estimate and its associated uncertainty. They do so according to a circular Kalman filter, a statistically optimal algorithm for circular estimation. Our network generalizes standard ring attractor models by encoding uncertainty in the amplitude of a bump of neural activity. More generally, we show that near-Bayesian integration is inherent in ring attractor networks, as long as their connectivity strength allows them to sufficiently deviate from the attractor state. Furthermore, we identified the basic network motifs that are required to implement Bayesian inference, and show that these motifs are present in the Drosophila HD system connectome. Overall, our work demonstrates that the Drosophila HD system can in principle implement a dynamic Bayesian inference algorithm in a biologically plausible manner, consistent with recent findings that suggest ring-attractor dynamics underlie the Drosophila HD system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard Hardstone ◽  
Michael Zhu ◽  
Adeen Flinker ◽  
Lucia Melloni ◽  
Sasha Devore ◽  
...  

AbstractPerception results from the interplay of sensory input and prior knowledge. Despite behavioral evidence that long-term priors powerfully shape perception, the neural mechanisms underlying these interactions remain poorly understood. We obtained direct cortical recordings in neurosurgical patients as they viewed ambiguous images that elicit constant perceptual switching. We observe top-down influences from the temporal to occipital cortex, during the preferred percept that is congruent with the long-term prior. By contrast, stronger feedforward drive is observed during the non-preferred percept, consistent with a prediction error signal. A computational model based on hierarchical predictive coding and attractor networks reproduces all key experimental findings. These results suggest a pattern of large-scale information flow change underlying long-term priors’ influence on perception and provide constraints on theories about long-term priors’ influence on perception.


Author(s):  
Toby St. Clere Smithe ◽  
Simon M Stringer

Abstract Place and head-direction (HD) cells are fundamental to maintaining accurate representations of location and heading in the mammalian brain across sensory conditions, and are thought to underlie path integration—the ability to maintain an accurate representation of location and heading during motion in the dark. Substantial evidence suggests that both populations of spatial cells function as attractor networks, but their developmental mechanisms are poorly understood. We present simulations of a fully self-organizing attractor network model of this process using well-established neural mechanisms. We show that the differential development of the two cell types can be explained by their different idiothetic inputs, even given identical visual signals: HD cells develop when the population receives angular head velocity input, whereas place cells develop when the idiothetic input encodes planar velocity. Our model explains the functional importance of conjunctive “state-action” cells, implying that signal propagation delays and a competitive learning mechanism are crucial for successful development. Consequently, we explain how insufficiently rich environments result in pathology: place cell development requires proximal landmarks; conversely, HD cells require distal landmarks. Finally, our results suggest that both networks are instantiations of general mechanisms, and we describe their implications for the neurobiology of spatial processing.


2021 ◽  
Author(s):  
Joao Barbosa ◽  
Vahan Babushkin ◽  
Ainsley Temudo ◽  
Kartik K Sreenivasan ◽  
Albert Compte

Working memory function is severely limited. One key limitation that constrains the ability to maintain multiple items in working memory simultaneously is so-called swap errors. These errors occur when an inaccurate response is in fact accurate relative to a non-target stimulus, reflecting the failure to maintain the appropriate association or 'binding' between the features that define one object (e.g., color and location). The mechanisms underlying feature binding in working memory remain unknown. Here, we tested the hypothesis that features are bound in memory through synchrony across feature-specific neural assemblies. We built a biophysical neural network model composed of two one-dimensional attractor networks - one for color and one for location - simulating feature storage in different cortical areas. Within each area, gamma oscillations were induced during bump attractor activity through the interplay of fast recurrent excitation and slower feedback inhibition. As a result, different memorized items were held at different phases of the network's oscillation. These two areas were then reciprocally connected via weak cortico-cortical excitation, accomplishing binding between color and location through the synchronization of pairs of bumps across the two areas. Encoding and decoding of color-location associations was accomplished through rate coding, overcoming a long-standing limitation of binding through synchrony. In some simulations, swap errors arose: 'color bumps' abruptly changed their phase relationship with 'location bumps'. This model, which leverages the explanatory power of similar attractor models, specifies a plausible mechanism for feature binding and makes specific predictions about swap errors that are testable at behavioral and neurophysiological levels.


2021 ◽  
Author(s):  
Mario González ◽  
Ángel Sánchez ◽  
David Dominguez ◽  
Francisco B. Rodr
Keyword(s):  

2021 ◽  
Author(s):  
Ruy Gómez-Ocádiz ◽  
Massimiliano Trippa ◽  
Lorenzo Posani ◽  
Simona Cocco ◽  
Rémi Monasson ◽  
...  

AbstractEpisodic memory formation and recall are complementary processes that put conflicting requirements on neuronal computations in the hippocampus. How this challenge is resolved in hippocampal circuits is unclear. To address this question, we obtained in vivo whole-cell patch-clamp recordings from dentate gyrus granule cells in head-fixed mice navigating in familiar and novel virtual environments. We find that granule cells consistently show a small transient depolarization of their membrane potential upon transition to a novel environment. This synaptic novelty signal is sensitive to local application of atropine, indicating that it depends on metabotropic acetylcholine receptors. A computational model suggests that the observed transient synaptic response to novel environments may lead to a bias in the granule cell population activity, which can in turn drive the downstream attractor networks to a new state, thereby favoring the switch from generalization to discrimination when faced with novelty. Such a novelty-driven cholinergic switch may enable flexible encoding of new memories while preserving stable retrieval of familiar ones.


2021 ◽  
Author(s):  
Davide Spalla ◽  
Alessandro Treves ◽  
Charlotte Boccara

Abstract An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates – such as position and direction – receive inputs from cells conjunctively coding for position, direction and self-motion. As yet, such conjunctive coding had not been found in the hippocampal region. Here, we report neurons coding for angular and linear velocity, distributed across the medial entorhinal cortex, the presubiculum and the parasubiculum. These self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation, calling for the revision of current CAN models. These results offer insights as to how linear/angular speed – derivative in time of position/direction – may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.


2021 ◽  
Author(s):  
Davide Spalla ◽  
Alessandro Treves ◽  
Charlotte N. Boccara

AbstractAn essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates – such as position and direction – receive inputs from cells conjunctively coding for position, direction and self-motion. As yet, such conjunctive coding had not been found in the hippocampal region. Here, we report neurons coding for angular and linear velocity, distributed across the medial entorhinal cortex, the presubiculum and the parasubiculum. These self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation, calling for the revision of current CAN models. These results offer insights as to how linear/angular speed – derivative in time of position/direction – may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edmund T. Rolls ◽  
Wei Cheng ◽  
Jianfeng Feng

AbstractWe describe advances in the understanding of brain dynamics that are important for understanding the operation of the cerebral cortex in health and disease. In data from 1017 participants from the Human Connectome Project, we show that early visual and connected areas have low temporal variability of their functional connectivity. We show that a low temporal variability of the connectivity of cortical areas is related to high mean functional connectivity between those areas, and provide an account of how these dynamics arise. We then investigate how these concepts help to understand brain dynamics in mental disorders. We find that in both first episode and long-term schizophrenia, reduced functional connectivity of early visual and related temporal cortex areas is associated with increased temporal variability of the functional connectivity, consistent with decreased stability of attractor networks related to sensory processing. In ADHD, we find these functional connectivities are increased and their temporal variability is decreased, and relate this to increased engagement with visual sensory input as manifest in high screen time usage in ADHD. We further show that these differences in the dynamics of the cortex in schizophrenia, and ADHD can be related to differences in the functional connectivity of the specific sensory vs. association thalamic nuclei. These discoveries help to advance our understanding of cortical operation in health, and in some mental disorders.


2020 ◽  
pp. 554-608
Author(s):  
Edmund T. Rolls

In this chapter we consider how the operation of attractor networks in the brain is influenced by noise in the brain produced by the random firing times of neurons for a given mean firing rate; how this can in fact be beneficial to the operation of the brain; and how the stability of these systems and how they are influenced by noise in the brain is relevant to understanding a number of mental disorders. The concept of noise in attractor networks is important to understanding decision-making, short-term memory, and depression and schizophrenia, and this is described in this Chapter. It is a key aim of this book to increase understanding of the brain that is relevant not only to its operation in health, but also in disease, and how it may be possible to ameliorate some of the effects found in these mental and other disorders.


Sign in / Sign up

Export Citation Format

Share Document