Carbon allocation to the root system of tropical tree Ceiba pentandra using 13C pulse labelling in an aeroponic facility

2020 ◽  
Vol 40 (3) ◽  
pp. 350-366
Author(s):  
Neringa Mannerheim ◽  
Carola H Blessing ◽  
Israel Oren ◽  
José M Grünzweig ◽  
Christoph Bachofen ◽  
...  

Abstract Despite the important role of tropical forest ecosystems in the uptake and storage of atmospheric carbon dioxide (CO2), the carbon (C) dynamics of tropical tree species remains poorly understood, especially regarding belowground roots. This study assessed the allocation of newly assimilated C in the fast-growing pioneer tropical tree species Ceiba pentandra (L.), with a special focus on different root categories. During a 5-day pulse-labelling experiment, 9-month-old (~3.5-m-tall) saplings were labelled with 13CO2 in a large-scale aeroponic facility, which allowed tracing the label in bulk biomass and in non-structural carbohydrates (sugars and starch) as well as respiratory CO2 from the canopy to the root system, including both woody and non-woody roots. A combined logistic and exponential model was used to evaluate 13C mean transfer time and mean residence time (MRT) to the root systems. We found 13C in the root phloem as early as 2 h after the labelling, indicating a mean C transfer velocity of 2.4 ± 0.1 m h−1. Five days after pulse labelling, 27% of the tracers taken up by the trees were found in the leaves and 13% were recovered in the woody tissue of the trunk, 6% in the bark and 2% in the root systems, while 52% were lost, most likely by respiration and exudation. Larger amounts of 13C were found in root sugars than in starch, the former also demonstrating shorter MRT than starch. Of all investigated root categories, non-woody white roots (NRW) showed the largest 13C enrichment and peaked in the deepest NRW (2–3.5 m) as early as 24 ± 2 h after labelling. In contrast to coarse woody brown roots, the sink strength of NRW increased with root depth. The findings of this study improve the understanding of C allocation in young tropical trees and provide unique insights into the changing contributions of woody and non-woody roots to C sink strengths with depth.

2008 ◽  
Vol 10 (4) ◽  
pp. 1001-1004 ◽  
Author(s):  
Marcela Corbo Guidugli ◽  
Tatiana de Campos ◽  
Adna Cristina Barbosa de Sousa ◽  
Juliana Massimino Feres ◽  
Alexandre Magno Sebbenn ◽  
...  

2021 ◽  
Author(s):  
Martijn Slot ◽  
Tantawat Nardwattanawong ◽  
Georgia G. Hernández ◽  
Amauri Bueno ◽  
Markus Riederer ◽  
...  

2008 ◽  
Vol 68 (4) ◽  
pp. 781-793 ◽  
Author(s):  
GM. Souza ◽  
RV. Ribeiro ◽  
AM. Sato ◽  
MS. Oliveira

This study addressed some questions about how a suitable leaf carbon balance can be attained for different functional groups of tropical tree species under contrasting forest light environments. The study was carried out in a fragment of semi-deciduous seasonal forest in Narandiba county, São Paulo Estate, Brazil. 10-month-old seedlings of four tropical tree species, Bauhinia forficata Link (Caesalpinioideae) and Guazuma ulmifolia Lam. (Sterculiaceae) as light-demanding pioneer species, and Hymenaea courbaril L. (Caesalpinioideae) and Esenbeckia leiocarpa Engl. (Rutaceae) as late successional species, were grown under gap and understorey conditions. Diurnal courses of net photosynthesis (Pn) and transpiration were recorded with an open system portable infrared gas analyzer in two different seasons. Dark respiration and photorespiration were also evaluated in the same leaves used for Pn measurements after dark adaptation. Our results showed that diurnal-integrated dark respiration (Rdi) of late successional species were similar to pioneer species. On the other hand, photorespiration rates were often higher in pioneer than in late successional species in the gap. However, the relative contribution of these parameters to leaf carbon balance was similar in all species in both environmental conditions. Considering diurnal-integrated values, gross photosynthesis (Pgi) was dramatically higher in gap than in understorey, regardless of species. In both evaluated months, there were no differences among species of different functional groups under shade conditions. The same was observed in May (dry season) under gap conditions. In such light environment, pioneers were distinguished from late successional species in November (wet season), showing that ecophysiological performance can have a straightforward relation to seasonality.


Biotropica ◽  
2020 ◽  
Vol 52 (3) ◽  
pp. 415-420 ◽  
Author(s):  
Rafael Carvalho da Costa ◽  
Flavio Antonio Maës dos Santos

2005 ◽  
Vol 28 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Rafael V Ribeiro ◽  
Gustavo M Souza ◽  
Ricardo F Oliveira ◽  
Eduardo C Machado

Sign in / Sign up

Export Citation Format

Share Document