scholarly journals A Homolog of the Arabidopsis TIME FOR COFFEE Gene Is Involved in Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon

Author(s):  
Rafael Della Coletta ◽  
Anastasiya A. Lavell ◽  
David F. Garvin

Plants resist infection by pathogens using both preexisting barriers and inducible defense responses. Inducible responses are governed in a complex manner by various hormone signaling pathways. The relative contribution of hormone signaling pathways to nonhost resistance to pathogens is not well understood. In this study, we examined the molecular basis of disrupted nonhost resistance to the fungal species Puccinia graminis, which causes stem rust of wheat, in an induced mutant of the model grass Brachypodium distachyon. Through bioinformatic analysis, a 1 base pair deletion in the mutant genotype was identified that introduces a premature stop codon in the gene Bradi1g24100, which is a homolog of the Arabidopsis thaliana gene TIME FOR COFFEE (TIC). In Arabidopsis, TIC is central to the regulation of the circadian clock and plays a crucial role in jasmonate signaling by attenuating levels of the transcription factor protein MYC2, and its mutational disruption results in enhanced susceptibility to the hemi-biotroph Pseudomonas syringae. Our similar finding for an obligate biotroph suggests that the biochemical role of TIC in mediating disease resistance to biotrophs is conserved in grasses, and that the correct modulation of jasmonate signaling during infection by Puccinia graminis may be essential for nonhost resistance to wheat stem rust in B. distachyon.

2019 ◽  
Vol 32 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Rafael Della Coletta ◽  
Candice N. Hirsch ◽  
Matthew N. Rouse ◽  
Aaron Lorenz ◽  
David F. Garvin

The emergence of new races of Puccinia graminis f. sp. tritici, the causal pathogen of wheat stem rust, has spurred interest in developing durable resistance to this disease in wheat. Nonhost resistance holds promise to help control this and other diseases because it is durable against nonadapted pathogens. However, the genetic and molecular basis of nonhost resistance to wheat stem rust is poorly understood. In this study, the model grass Brachypodium distachyon, a nonhost of P. graminis f. sp. tritici, was used to genetically dissect nonhost resistance to wheat stem rust. A recombinant inbred line (RIL) population segregating for response to wheat stem rust was evaluated for resistance. Evaluation of genome-wide cumulative single nucleotide polymorphism allele frequency differences between contrasting pools of resistant and susceptible RILs followed by molecular marker analysis identified six quantitative trait loci (QTL) that cumulatively explained 72.5% of the variation in stem rust resistance. Two of the QTLs explained 31.7% of the variation, and their interaction explained another 4.6%. Thus, nonhost resistance to wheat stem rust in B. distachyon is genetically complex, with both major and minor QTLs acting additively and, in some cases, interacting. These findings will guide future research to identify genes essential to nonhost resistance to wheat stem rust.


Plant Disease ◽  
2005 ◽  
Vol 89 (2) ◽  
pp. 159-163 ◽  
Author(s):  
P. D. Peterson ◽  
K. J. Leonard ◽  
J. D. Miller ◽  
R. J. Laudon ◽  
T. B. Sutton

A federal and state program operated from 1918 until the 1980s to eradicate common barberry (Berberis vulgaris), the alternate host of Puccinia graminis, from the major areas of cereal production in the United States. Over 500 million bushes were destroyed nationally during the program, approximately 1 million in Minnesota. Some sites in Minnesota where barberry bushes were destroyed remained in the “active” class when eradication was phased out in the 1980s. Active sites were defined as those on which there was still a possibility of emergence of barberry seedlings or sprouts arising from the parent bush. In the present study, from 1998 to 2002, 72 of the approximately 1,200 active sites in Minnesota were surveyed. Areas within 90 m of mapped locations of previously destroyed bushes were searched carefully at each site. Reemerged barberry plants were found on 32 sites. The reproductive status and GPS coordinates were recorded for each reemerged bush. More than 90% of the barberry bushes were found in counties with less than 400 ha of wheat per county, mostly in southeastern Minnesota, but one bush was found in a major wheat-producing county in northwestern Minnesota. Reemergence of barberry may serve as a source of new wheat stem rust races in future epidemics.


Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1939-1943
Author(s):  
Xian Xin Wu ◽  
Qiu Jun Lin ◽  
Xin Yu Ni ◽  
Qian Sun ◽  
Rong Zhen Chen ◽  
...  

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is one of the most serious fungal diseases in wheat production, seriously threatening the global supply of wheat and endangering food security. The present study was conducted to evaluate wheat monogenic lines with known Sr genes to the most prevalent P. graminis f. sp. tritici races in China. In addition, wheat lines introduced from the International Maize and Wheat improvement Center (CIMMYT) with resistance to the Ug99 race group were also evaluated with the prevalent Chinese P. graminis f. sp. tritici races. The monogenic lines containing Sr9e, Sr21, Sr26, Sr31, Sr33, Sr35, Sr37, Sr38, Sr47, and SrTt3 were effective against races 21C3CTTTM, 34C0MRGSM, and 34C3MTGQM at both seedling and adult-plant stages. In contrast, monogenic lines containing Sr6, Sr7b, Sr8a, Sr9a, Sr9b, Sr9d, Sr9f, Sr9g, Sr13, Sr16, Sr18, Sr19, Sr20, Sr24, Sr28, Sr29, and Sr34 were highly susceptible to these races at both seedling and adult-plant stages. Lines with Sr5, Sr10, Sr13, Sr14, Sr15, Sr17, Sr21, Sr22, Sr23, Sr25, Sr27, Sr29, Sr30, Sr32, Sr36, and Sr39 were resistant to one or more of the tested races. Among the 123 CIMMYT lines, 38 (30.9%) showed varying levels of susceptibility to Chinese P. graminis f. sp. tritici races. The results should be useful for breeding wheat cultivars with resistance to stem rust.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 590-590 ◽  
Author(s):  
Z. A. Pretorius ◽  
L. J. Szabo ◽  
W. H. P. Boshoff ◽  
L. Herselman ◽  
B. Visser

Seven races have been described in the Ug99 race group of Puccinia graminis f. sp. tritici (2). Ug99-related races previously recorded in South Africa are TTKSF, TTKSP, and PTKST (4). In December 2010, severe stem rust infection of the winter wheat cv. Matlabas was observed for the first time in South Africa. Race analysis using the 20 North American (NA) stem rust differential lines and letter code system classified the race as TTKSF. In comparative infection studies in a greenhouse, cv. Matlabas seedlings were susceptible (infection type [IT] 4) to isolate UVPgt61/1 (TTKSF+) collected from Afrikaskop in the eastern Free State, whereas the cultivar was resistant (IT 1 to 2) to stem rust isolates 2013 (TTKSF), UVPgt55 (TTKSF), UVPgt59 (TTKSP), and UVPgt60 (PTKST). Isolate 2013 represents the original collection of race TTKSF in South Africa (1). In addition to the NA differentials, no variation in the IT range of seedlings of lines with Sr7a, 8b, 12, 13, 14, 16, 18, 19, 22, 25, 26, 27, 28, 29, 32, 33, 34, 35, 39, 41, 42, 43, 44, Em, R, Tt2, and Satu was observed between UVPgt61/1 and UVPgt55. With the exception of cv. Matlabas, ITs of 106 South African cultivars likewise did not differentiate UVPgt61/1 and UVPgt55. Seedling IT studies were conducted at least twice. Microsatellite analysis (4) showed that all single pustule isolates established from the original Matlabas isolate formed part of the Ug99 group. When characterized with selected single nucleotide polymorphisms (SNPs), all single pustule isolates shared an identical genotype that differed from UVPgt55 (TTKSF), a foreign introduction into South Africa (1,3). SNP genotype analysis suggests that UVPgt61/1 is genetically dissimilar to UVPgt55, as is Zim1009, another TTKSF+ isolate that was collected from Birchenough in Zimbabwe. Studies are underway to determine the identity of the defeated Sr gene in Matlabas and the cultivar has been added to the South African stem rust differential set. TTKSF+ is the eighth race detected in the Ug99 group. Since no other cultivars or advanced lines were found to carry the Matlabas gene, it is unlikely that race TTKSF+ will threaten wheat production in South Africa. However, the occurrence of a new Ug99-related race emphasizes the variability within this internationally important group. References: (1) W. H. P. Boshoff et al. Plant Dis. 86:922, 2002. (2) R. F. Park et al. Euphytica 179:109, 2011. (3) B. Visser et al. Mol. Plant Pathol. 10:213, 2009. (4) B. Visser et al. Euphytica 179:119, 2011.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 293-293
Author(s):  
Tsegaab Tesfaye ◽  
Alemayehu Chala ◽  
Elfinesh Shikur ◽  
David Hodson ◽  
Les J. Szabo

1969 ◽  
Vol 47 (11) ◽  
pp. 1816-1817 ◽  
Author(s):  
P. G. Williams

Hyphae of the wheat stem rust fungus form short, lateral projections under conditions of artificial culture that are unfavorable for saprophytic growth. It is suggested that the structures are homologous with the haustoria of intercellular rust mycelium.


Sign in / Sign up

Export Citation Format

Share Document