axenic cultures
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 18)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 15 (1) ◽  
pp. 111-119
Author(s):  
Saúl Fernandez-Valenzuela ◽  
Francisca Chávez-Ruvalcaba ◽  
Julio Cesar Beltran-Rocha ◽  
Pilar Morales San Claudio ◽  
Raúl Reyna-Martínez

Microalgae have several applications in nutraceuticals, pharmaceuticals, cosmetics, biofuel production, and bioremediation, among other fields. Isolation and purification are extremely important for obtaining axenic cultures of microalgae from different environments and crucial for their biotechnological applications, but it is not an easy task. In view of the above, it is fundamental to know the classical and advanced techniques and examples of how scientists from around the globe have applied such methods to isolate several genera and the impact of each step on successful algal purification. This review provides a brief and simple explanation of the methodology for sampling, growth, obtention of unialgal, and posterior axenic culture, which will facilitate the development of novel microalgae-related discoveries and applications for new researchers.


2021 ◽  
Vol 914 (1) ◽  
pp. 012016
Author(s):  
Y Wibisono ◽  
A I Putri ◽  
Y Hadiyan ◽  
L Haryjanto ◽  
L Hakim ◽  
...  

Abstract The high valuable endemic commodities in Papua, Masoyi’s (Cryptocarya massoy) population facing great threat due to unsustainable harvest system. Generative propagation faces significant challenges due to seed characteristics and habitat conditions. Controlled conditions and the role of hormones have an important effect on generative growth. This study aimed to determine the influence of axenic culture with sterilization treatments Isothiazolone Biocide (IB) and 1-Naphtaleaneacetic Acid (NAA) in Murashige and Skoog (MS) medium on seed regeneration and to observe the development of seedlings at the acclimatization stage. The tissue culture method was used. The highest percentage of axenic cultures (57%) was obtained with 5% of BI. The germination rate of masoyi seeds was achieved by 100%. Furthermore, it showed varied responses depending upon concentrations of NAA, the addition of 1 ml l−1 NAA in MS medium is recommended. Acclimatization has been successfully carried out in the greenhouse (67% survival rate) and excellent seedlings growth at nursery (52.35 + 0.6 cm in height after one year transferred). The impact of the controlled conditions and the addition of NAA to axenic cultures in vitro increased the germination of masoyi seeds. Axenic culture and hormones were also important requirements for mass propagation of masoyi by tissue culture.


2021 ◽  
Vol 9 (10) ◽  
pp. 2078
Author(s):  
Inês Vitorino ◽  
José Diogo Neves Santos ◽  
Ofélia Godinho ◽  
Francisca Vicente ◽  
Vítor Vasconcelos ◽  
...  

Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.


2021 ◽  
Author(s):  
Julian Damashek ◽  
Barbara Bayer ◽  
Gerhard J Herndl ◽  
Natalie J Wallsgrove ◽  
Tamara Allen ◽  
...  

Genomic and physiological evidence from some strains of ammonia-oxidizing Thaumarchaeota demonstrate their additional ability to oxidize nitrogen (N) supplied as urea or cyanate, fueling conjecture about their ability to conserve energy by directly oxidizing reduced N from other dissolved organic nitrogen (DON) compounds. Similarly, field studies have shown rapid oxidation of polyamine-N in the ocean, but it is unclear whether Thaumarchaeota oxidize polyamine-N directly or whether heterotrophic DON remineralization is required. We tested growth of two marine Nitrosopumilus isolates on DON compounds including polyamines, amino acids, primary amines, and amides as their sole energy source. Though axenic cultures only consumed N supplied as ammonium or urea, there was rapid but inconsistent oxidation of N from the polyamine putrescine when cultures included a heterotrophic bacterium. Surprisingly, axenic cultures oxidized 15N-putrescine during growth on ammonia, suggesting co-metabolism or accelerated breakdown of putrescine by reactive metabolic byproducts. Nitric oxide, hydrogen peroxide, or peroxynitrite did not oxidize putrescine in sterile seawater. These data suggest that the N in common DON molecules is not directly accessible to marine Thaumarchaeota, with thaumarchaeal oxidation (and presumably assimilation) of DON-N requiring initial heterotrophic remineralization. However, reactive byproducts or enzymatic co-metabolism may facilitate limited thaumarchaeal DON-N oxidation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pauline Roux ◽  
Raffaele Siano ◽  
Karine Collin ◽  
Gwenael Bilien ◽  
Corinne Sinquin ◽  
...  

AbstractHigh biomasses of the marine dinoflagellate Lepidodinium chlorophorum cause green seawater discolorations along Southern Brittany (NE Atlantic, France). The viscosity associated to these phenomena has been related to problems in oyster cultivation. The harmful effect of L. chlorophorum might originate from the secretion of Extracellular Polymeric Substances (EPS). To understand whether the EPS are produced by L. chlorophorum or its associated bacteria, or if they are a product of their interaction, batch cultures were performed under non-axenic and pseudo-axenic conditions for three strains. Maximum dinoflagellate cell abundances were observed in pseudo-axenic cultures. The non-sinking fraction of polymers (Soluble Extracellular Polymers, SEP), mainly composed of proteins and the exopolysaccharide sulphated galactan, slightly increased in pseudo-axenic cultures. The amount of Transparent Exopolymer Particles (TEP) per cell increased under non-axenic conditions. Despite the high concentrations of Particulate Organic Carbon (POC) measured, viscosity did not vary. These results suggest that the L. chlorophorum-bacteria interaction could have a detrimental consequence on the dinoflagellate, translating in a negative effect on L. chlorophorum growth, as well as EPS overproduction by the dinoflagellate, at concentrations that should not affect seawater viscosity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Chun-Hung Lee ◽  
Ping-Lung Chan ◽  
Nora Fung-Yee Tam ◽  
Steven Jing-Liang Xu ◽  
Fred Wang-Fat Lee

AbstractAcademic research on dinoflagellate, the primary causative agent of harmful algal blooms (HABs), is often hindered by the coexistence with bacteria in laboratory cultures. The development of axenic dinoflagellate cultures is challenging and no universally accepted method suit for different algal species. In this study, we demonstrated a promising approach combined density gradient centrifugation, antibiotic treatment, and serial dilution to generate axenic cultures of Karenia mikimotoi (KMHK). Density gradient centrifugation and antibiotic treatments reduced the bacterial population from 5.79 ± 0.22 log10 CFU/mL to 1.13 ± 0.07 log10 CFU/mL. The treated KMHK cells were rendered axenic through serial dilution, and algal cells in different dilutions with the absence of unculturable bacteria were isolated. Axenicity was verified through bacterial (16S) and fungal internal transcribed spacer (ITS) sequencing and DAPI epifluorescence microscopy. Axenic KMHK culture regrew from 1000 to 9408 cells/mL in 7 days, comparable with a normal culture. The established methodology was validated with other dinoflagellate, Alexandrium tamarense (AT6) and successfully obtained the axenic culture. The axenic status of both cultures was maintained more than 30 generations without antibiotics. This efficient, straightforward and inexpensive approach suits for both armored and unarmored dinoflagellate species.


Author(s):  
Roman Telittchenko ◽  
Albert Descoteaux

In Leishmania, genetic exchange has been experimentally demonstrated to occur in the sand fly vector and in promastigote axenic cultures through a meiotic-like process. No evidence of genetic exchange in mammalian hosts have been reported so far, possibly due to the fact that the Leishmania species used in previous studies replicate within individual parasitophorous vacuoles. In the present work, we explored the possibility that residing in communal vacuoles may provide conditions favorable for genetic exchange for L. mexicana and L. amazonensis. Using promastigote lines of both species harboring integrated or episomal drug-resistance markers, we assessed whether genetic exchange can occur in axenic cultures, in infected macrophages as well as in infected mice. We obtained evidence of genetic exchange for L. amazonensis in both axenic promastigote cultures and infected macrophages. However, the resulting products of those putative genetic events were unstable as they did not sustain growth in subsequent sub-cultures, precluding further characterization.


2020 ◽  
Vol 113 (12) ◽  
pp. 1939-1952 ◽  
Author(s):  
Muhammad Waqqas ◽  
Markus Salbreiter ◽  
Nicolai Kallscheuer ◽  
Mareike Jogler ◽  
Sandra Wiegand ◽  
...  

AbstractPlanctomycetes are ubiquitous bacteria with fascinating cell biological features. Strains available as axenic cultures in most cases have been isolated from aquatic environments and serve as a basis to study planctomycetal cell biology and interactions in further detail. As a contribution to the current collection of axenic cultures, here we characterise three closely related strains, Poly24T, CA51T and Mal33, which were isolated from the Baltic Sea, the Pacific Ocean and the Mediterranean Sea, respectively. The strains display cell biological features typical for related Planctomycetes, such as division by polar budding, presence of crateriform structures and formation of rosettes. Optimal growth was observed at temperatures of 30–33 °C and at pH 7.5, which led to maximal growth rates of 0.065–0.079 h−1, corresponding to generation times of 9–11 h. The genomes of the novel isolates have a size of 7.3–7.5 Mb and a G + C content of 57.7–58.2%. Phylogenetic analyses place the strains in the family Pirellulaceae and suggest that Roseimaritima ulvae and Roseimaritima sediminicola are the current closest relatives. Analysis of five different phylogenetic markers, however, supports the delineation of the strains from members of the genus Roseimaritima and other characterised genera in the family. Supported by morphological and physiological differences, we conclude that the strains belong to the novel genus Rosistilla gen. nov. and constitute two novel species, for which we propose the names Rosistilla carotiformis sp. nov. and Rosistilla oblonga sp. nov. (the type species). The two novel species are represented by the type strains Poly24T (= DSM 102938T = VKM B-3434T = LMG 31347T = CECT 9848T) and CA51T (= DSM 104080T = LMG 29702T), respectively.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Suvi Sutela ◽  
Marco Forgia ◽  
Eeva J Vainio ◽  
Marco Chiapello ◽  
Stefania Daghino ◽  
...  

Abstract Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.


Sign in / Sign up

Export Citation Format

Share Document