Biological Control of Pythium Seed Rot and Preemergence Damping-Off of Cotton with Enterobacter cloacae and Erwinia herbicola Applied as Seed Treatments

Plant Disease ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 140 ◽  
Author(s):  
Eric B. Nelson
Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1421-1432 ◽  
Author(s):  
Kelsey Scott ◽  
Meredith Eyre ◽  
Dair McDuffee ◽  
Anne E. Dorrance

Phytophthora, Phytopythium, and Pythium species that cause early-season seed decay and pre-emergence and post-emergence damping off of soybean are most commonly managed with seed treatments. The phenylamide fungicides metalaxyl and mefenoxam, and ethaboxam are effective toward some but not all species. The primary objective of this study was to evaluate the efficacy of ethaboxam in fungicide mixtures and compare those with other fungicides as seed treatments to protect soybean against Pythium, Phytopythium, and Phytophthora species in both high-disease field environments and laboratory seed plate assays. The second objective was to evaluate these seed treatment mixtures on cultivars that have varying levels and combinations of resistance to these soilborne pathogens. Five of eight environments received adequate precipitation in the 14 days after planting for high levels of seedling disease development and treatment evaluations. Three environments had significantly greater stands, and three had significantly greater yield when ethaboxam was used in the seed treatment mixture compared with treatments containing metalaxyl or mefenoxam alone. Three fungicide formulations significantly reduced disease severity compared with nontreated in the seed plate assay for 17 species. However, the combination of ethaboxam plus metalaxyl in a mixture was more effective than either fungicide alone against some Pythium and Phytopythium species. Overall, our results indicate that the addition of ethaboxam to a fungicide seed treatment is effective in reducing seed rot caused by these pathogens commonly isolated from soybean in Ohio but that these effects can be masked when cultivars with resistance are planted.


Plant Disease ◽  
2020 ◽  
Author(s):  
Moying Wang ◽  
Stephen Van Vleet ◽  
Rebecca McGee ◽  
Timothy Carl Paulitz ◽  
Lyndon D. Porter ◽  
...  

Metalaxyl and its isomer mefenoxam have been the primary fungicides used as seed treatments in managing Pythium seed rot and damping-off of chickpea. However, recent outbreaks of seed rot and damping-off of metalaxyl-treated chickpea seeds were found in the dryland agriculture regions of southeastern Washington and northern Idaho. Pythium spp. isolated from rotten seeds and associated soils showed high levels of resistance to metalaxyl. Large proportions (31 to 91%) of Pythium isolates resistant to metalaxyl were detected in areas where severe chickpea damping-off occurred and were observed in commercial chickpea fields over several years. All metalaxyl-resistant isolates were identified as P. ultimum var. ultimum. The metalaxyl resistance trait measured by EC50 values was stable over 10 generations in the absence of metalaxyl, and no observable fitness costs were associated with metalaxyl resistance. Under controlled conditions, metalaxyl treatments failed to protect chickpea seeds from seed rot and damping-off following inoculation with metalaxyl-resistant Pythium isolates. In culture, ethaboxam inhibited mycelial growth of metalaxyl-resistant, as well as metalaxyl-sensitive isolates. Greenhouse and field tests showed that ethaboxam is effective in managing metalaxyl-resistant Pythium. Ethaboxam in combination with metalaxyl is now commonly applied as seed treatments in commercial chickpea production.


2003 ◽  
Vol 69 (2) ◽  
pp. 1114-1120 ◽  
Author(s):  
Koji Kageyama ◽  
Eric B. Nelson

ABSTRACT This study was initiated to understand whether differential biological control efficacy of Enterobacter cloacae on various plant species is due to differences in the ability of E. cloacae to inactivate the stimulatory activity of seed exudates to Pythium ultimum sporangium germination. In biological control assays, E. cloacae was effective in controlling Pythium damping-off when placed on the seeds of carrot, cotton, cucumber, lettuce, radish, tomato, and wheat but failed to protect corn and pea from damping-off. Seeds from plants such as corn and pea had high rates of exudation, whereas cotton and cucumber seeds had much lower rates of exudation. Patterns of seed exudation and the release of P. ultimum sporangium germination stimulants varied among the plants tested. Seed exudates of plants such as carrot, corn, lettuce, pea, radish, and wheat were generally more stimulatory to P. ultimum than were the exudates of cotton, cucumber, sunflower, and tomato. However, this was not directly related to the ability of E. cloacae to inactivate the stimulatory activity of the exudate and reduce P. ultimum sporangium germination. In the spermosphere, E. cloacae readily reduced the stimulatory activity of seed exudates from all plant species except corn and pea. Our data have shown that the inability of E. cloacae to protect corn and pea seeds from Pythium damping-off is directly related to its ability to inactivate the stimulatory activity of seed exudates. On all other plants tested, E. cloacae was effective in suppressing damping-off and inactivating the stimulatory activity of seed exudates.


Sign in / Sign up

Export Citation Format

Share Document