First Report of Red Crown Rot on Soybeans in Mississippi

Plant Disease ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 273 ◽  
Author(s):  
K. W. Roy
Keyword(s):  
2013 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
David H. Gent ◽  
George Mueller-Warrant ◽  
Joanna L. Woods ◽  
Melodie L. Putnam ◽  
Megan C. Twomey

During July 2007, symptoms including weak growth and death of plants of cultivar Fuggle were reported by a hop grower in Marion Co., OR. Phomopsis tuberivora H.T. Güssow & W.R. Foster 1932 was consistently recovered from affected plants. Koch's postulates were fulfilled with three isolates of the fungus, establishing the pathogen and the disease red crown rot as the cause of the damage. This is the first report of red crown rot on hop in Oregon, which may have important management implications for affected hop yards and farms. Accepted for publication 19 March 2013. Published 24 June 2013.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 979
Author(s):  
H. H. Liu ◽  
Y. M. Shen ◽  
H. X. Chang ◽  
M. N. Tseng ◽  
Y. H. Lin

Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1777-1777
Author(s):  
N. Kleczewski ◽  
D. Plewa ◽  
C. Kangas ◽  
E. Phillippi ◽  
V. Kleczewski

Plant Disease ◽  
2020 ◽  
pp. PDIS-05-20-1045
Author(s):  
H.-Y. Wu ◽  
C.-Y. Tsai ◽  
Y.-M. Wu ◽  
H.-A. Ariyawansa ◽  
C.-L. Chung ◽  
...  
Keyword(s):  

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2021 ◽  
Author(s):  
Samara A. Oliveira ◽  
Daniel M. Dlugos ◽  
Paula Agudelo ◽  
Steven N. Jeffers

Root-knot nematodes (RKNs), Meloidogyne spp., are some of the most economically important pathogens of cultivated plants. Meloidogyne javanica is one of the most destructive RKN species and is well known for its broad host range and the severe damage it causes to plant roots (Perry et al. 2009). In Feb 2018, four mature dead and dying hybrid lavender plants (Lavandula ×intermedia ‘Phenomenal’) were collected in Edgefield County, South Carolina, and suspected of having Phytophthora root and crown rot (Dlugos and Jeffers 2018). Greenhouse-grown plants had been transplanted in Dec 2016 and Jan 2017 into a sandy loam soil on a site that had been fallow or in pasture for over 30 years. Some plants began to turn gray and die in summer 2017, and approximately 40% of 1230 plants were symptomatic or dead by Feb 2018. Phytophthora spp. were not isolated from the collected plants but were isolated from plants collected on subsequent visits. Instead, all four plants had small, smooth galls on the roots. Lavender roots were examined microscopically (30-70×), and egg masses of RKNs were observed on the galls. Mature, sedentary RKN females were handpicked from galled roots, and perineal patterns of 10 specimens were examined and identified as M. javanica. Juveniles and eggs were extracted from lavender roots by the method of Coolen and D’herde (1972). To confirm species identification, DNA was extracted from 10 individual juveniles, and a PCR assay was conducted using species-specific primers for M. javanica, Fjav/Rjav (Zijlstra et al. 2000). A single amplicon was produced with the expected size of approximately 720 bp, which confirmed identity as M. javanica. To determine pathogenicity, M. javanica from lavender roots were inoculated onto susceptible tomato plants for multiplication, and severe gall symptoms occurred on tomato roots 60 days later. Nematodes were extracted from tomato roots and inoculated onto healthy, rooted cuttings of ‘Phenomenal’ lavender plants growing in pots of soilless medium in a greenhouse. Plants were inoculated with 0, 1000, 2000, 5000, or 10000 eggs and juveniles of M. javanica. Five single-plant replicates were used for each treatment, and plants were randomized on a greenhouse bench. Plants were assessed 60 days after inoculation, and nematodes were extracted from roots and counted. The reproduction factor was 0, 43.8, 40.9, 9.1, 7.7, and 2.6 for initial nematode populations 0, 1000, 2000, 5000, and 10000, respectively, which confirmed pathogenicity (Hussey and Janssen 2002). Meloidogyne javanica also was recovered in Mar 2018 from galled roots on a ‘Munstead’ (L. angustifolia) lavender plant from Kentucky (provided by the Univ. of Kentucky Plant Disease Diagnostic Laboratories), and an unidentified species of Meloidogyne was isolated in Aug 2020 from a ‘Phenomenal’ plant grown in Florida. COI mtDNA sequences from the SC (MZ542457) and KY (MZ542458) populations were submitted to Genbank. M. javanica previously was found associated with field-grown lavender (hybrid and L. angustifolia) in Brazil, but pathogenicity was not studied (Pauletti and Echeverrigaray 2002). To our knowledge, this is the first report of M. javanica pathogenic to L. ×intermedia in the USA, and the first time RKNs have been proven to be pathogenic to Lavandula spp. following Koch’s Postulates. Further studies are needed to investigate the geographic distribution of M. javanica on lavender and the potential threat this nematode poses to lavender production in the USA.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yaxing Li ◽  
Yangfan Feng ◽  
Cuiping Wu ◽  
Junxin Xue ◽  
Binbin Jiao ◽  
...  

During a survey of pathogenic oomycetes in Nanjing, China from June 2019 to October 2020, at least ten adjacent Rhododendron pulchrum plants at a Jiangjun Mountain scenic spot showed symptoms of blight, and crown and root discoloration . Symptomatic root tissues collected from three 6-year-old plants were rinsed with water, cut into 10-mm pieces, surface sterilized with 70% ethanol for 1 min, and plated onto 10% clarified V8 PARP agar (cV8A-PARP) containing pimaricin (20 mg/liter), ampicillin (125 mg/liter), rifampicin (10 mg/liter), and pentachloronitrobenzene (20 mg/liter). Four Pythium-like isolates were recovered after three days of incubation at 26°C, and purified using hyphal-tipping. Ten agar plugs (2×2 mm2) of each isolate were grown in 10 mL of 10% clarified V8 juice (cV8) in a 10 cm plate at 26°C for 3 days to produce mycelial mats, and then the cV8 was replaced with sterile water. To stimulate sporangial production, three to five drops of soil extract solution were added to each plate. Sporangia were terminal, ovoid to globose, and the size is 24 to 45.6 (mean 34.7) (n=10.8) in length x 23.6 to 36.0 (mean 29.8) (n=6.2) in width. Gametangia were not observed in cV8A or liquid media after 30 days. For colony morphology, the isolates were sub-cultured onto three solid microbial media (cV8A-PARP, potato dextrose agar, corn meal agar) . All isolates had identical morphological features in the three media. Complete ITS and partial LSU and cox2 gene regions were amplified using primer pairs ITS1/ITS4, NL1/NL4, and FM58/FM66 , respectively. The ITS, LSU, and cox2 sequences of isolate PC-dj1 (GenBank Acc. No. MW205746, MW208002, MW208003) were 100.00% (936/936 nt), 100.00% (772/772 nt), and 99.64% (554/556 nt) identical to those of JX985743, MT042003, and GU133521, respectively. We built a maximum-likelihood tree of Phytopythium species using the concatenated dataset (ITS, LSU, cox2) to observe interspecific differences. Based on the morphological characters and sequences, isolate PC-djl was identified as Phytopythium litorale . As the four isolates (PC-dj1, PC-dj2, PC-dj3 and PC-dj4) tested had identical morphological characters and molecular marker sequences, the pathogenicity of the representative isolate, PC-dj1, was tested using two inoculation methods on ten one-year-old R. pulchrum plants. For the first inoculation method, plants were removed from the pot, and their roots were rinsed with tap water to remove the soil. Each of these plants was placed in a glass flask containing 250 mL of sterile water and 10 blocks (10 x 10 mm2) of mycelial mats harvested from a three-day-old culture of P. litorale, while the other plant was placed in sterile water as a control, and incubated at 26°C. After three days, symptoms including crown rot, root rot and blight was observed on the inoculated plants whereas the control remained asymptomatic. For the second inoculation method, ten plants were dug up to expose the root ball. Ten three-day-old cV8A plugs (5×5 mm2) from a PC-dj1 culture or sterile cV8A plugs were evenly insert into the root ball of a plant before it was planted back into the original pots. Both plants were maintained in a growth chamber set at 26°C with a 12/12 h light/dark cycle and irrigated as needed. After 14 to 21 days, the inoculated plant had symptoms resembling those in the field , while the control plant remained asymptomatic. Each inoculation method was repeated at triplicate and the outcomes were identical. Phytopythium isolates with morphological features and sequences identical to those of PC-dj1 were recovered from rotted crown and root tissues of all inoculated plants. Previously, P. litorale was found causing diseases of apple and Platanus orientalis in Turkey, fruit rot and seedling damping-off of yellow squash in southern Georgia, USA. This is the first report of this species causing crown and root rot on R. pulchrum, an important ornamental plant species in China. Additional surveys are ongoing to determine the distribution of P. litorale in the city of Nanjing.


Plant Disease ◽  
2019 ◽  
Vol 103 (11) ◽  
pp. 2959-2959 ◽  
Author(s):  
G. Gilardi ◽  
F. Bergeretti ◽  
M. L. Gullino ◽  
A. Garibaldi

2006 ◽  
Vol 55 (4) ◽  
pp. 573-573 ◽  
Author(s):  
A. M. Vettraino ◽  
L. Antonacci ◽  
L. Flamini ◽  
P. Nipoti ◽  
E. Rossini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document