scholarly journals First report of crown rot of Photinia fraseri caused by Phytophthora cactorum

2006 ◽  
Vol 55 (4) ◽  
pp. 573-573 ◽  
Author(s):  
A. M. Vettraino ◽  
L. Antonacci ◽  
L. Flamini ◽  
P. Nipoti ◽  
E. Rossini ◽  
...  
Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 686
Author(s):  
M. S. Wiseman ◽  
T. Bonar ◽  
M. I. Gordon ◽  
M. Serdani ◽  
M. L. Putnam

Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 576-576 ◽  
Author(s):  
S. N. Jeffers ◽  
G. Schnabel ◽  
J. P. Smith

Phytophthora cactorum causes crown rot of strawberry (Fragaria × ananassa) (2), a disease that has been particularly severe during the last 5 years in the southeastern United States. In the fall of 2001, strawberry plants (cv. Camarosa) in a field in Lexington County, South Carolina exhibited typical crown rot symptoms (2) 1 to 2 weeks after transplanting, even though plants had been drenched with mefenoxam (Ridomil Gold; Syngenta Crop Protection, Greensboro, NC) immediately after transplanting. Initially, we observed leaves that had marginal necrosis, were smaller than normal, and were discolored. Soon after, diseased plants appeared stunted and unthrifty compared with other plants in the field, and some of these plants eventually wilted and died. Severely affected plants had necrotic roots and decayed crowns. Ten symptomatic plants were collected for isolation. In the laboratory, root and crown tissues were rinsed in running tap water and blotted dry, small pieces of necrotic tissue were placed aseptically on PAR-V8 selective medium (1), and isolation plates were placed at 20°C in the dark for up to 7 days. P. cactorum was recovered from six plants. Isolates produced characteristic asexual and sexual structures directly on the isolation plates (i.e., papillate sporangia on sympodial sporangiophores and oospores with paragynous antheridia) (2). A single hypha of an isolate from each plant was transferred to fresh PAR-V8, and pure cultures were stored on cornmeal agar in glass vials at 15°C in the dark. All six isolates from the Lexington County field and nine other isolates of P. cactorum from strawberry (three from South Carolina, three from North Carolina, and three from Florida) were tested for sensitivity to mefenoxam on fungicide-amended medium. Mefenoxam was added to 10% clarified V8 juice agar (cV8A) after autoclaving so the concentration in the medium was 100 ppm. Agar plugs from active colonies were transferred to mefenoxam-amended and nonamended cV8A (three replicates per treatment), plates were placed at 25°C in the dark for 3 days, and linear mycelium growth was measured. All six isolates from Lexington County were highly resistant to mefenoxam with mycelium growth relatively unrestricted on mefenoxam-amended medium (73 to 89% of that on nonamended medium). In comparison, the other nine isolates were sensitive to mefenoxam with mycelium growth severely restricted by 100 ppm of mefenoxam (0 to 7% of that on nonamended medium). To our knowledge, this is the first report of mefenoxam resistance in P. cactorum on strawberry or any other crop in the United States and elsewhere. Because mefenoxam is the primary fungicide used to manage Phytophthora crown rot in the southeastern United States, resistance may limit use of this fungicide in strawberry production. References: (1) A. J. Ferguson and S. N. Jeffers. Plant Dis. 83:1129, 1999. (2) E. Seemüller. Crown rot. Pages 50–51 in: Compendium of Strawberry Diseases, 2nd ed. J. L. Maas, ed. The American Phytopathological Society, St. Paul, MN, 1998.


Plant Disease ◽  
2002 ◽  
Vol 86 (9) ◽  
pp. 1051-1051 ◽  
Author(s):  
B. de los Santos ◽  
M. Porras ◽  
C. Blanco ◽  
C. Barrau ◽  
F. Romero

Crown rot of strawberry (Fragaria × ananassa Duch. cv. Camarosa) was observed in three and two production fields in 2000 and 2001, respectively, in Huelva, southwestern Andalucia, Spain. Affected plants did not exhibit typical symptoms of red stele. Instead, there was an internal red-brown discoloration of the upper crown, a bluish discoloration of leaves, and the plants were wilted. Eventually, plants collapsed and died. Fungi were isolated from surface-disinfested necrotic crown tissue on P5ARPH medium (1). Plates were placed at 21°C for 5 to 10 days. One species was isolated consistently from symptomatic tissue. Microscopic observations revealed spherical oogonia with thin walls. Antheridia were paragynous and were attached to the oogonium near the oogonial stalk. Single oospores were spherical and had double-layered, yellow-brown walls (20 to 25 μm in diameter). Sporangia were usually borne terminally and were colorless and papillate (22 to 30 μm in diameter). Based on these characteristics, the causal agent was identified as Phytophthora cactorum (Lebert & Cohn) J. Schröt. (2). The fungus was transferred to V8 juice agar and maintained at 21°C in the dark. Disks (9-mm diameter) were removed from 7-day-old cultures of P. cactoru and used to inoculate five 2-month-old ‘Camarosa’ strawberry plants grown in sterilized peat in the greenhouse. Three disks were placed in the crown of each plant at soil level. Five noninoculated plants were similarly treated with sterile V8 juice agar disks only. After 2 weeks, the pathogen was reisolated from red-brown lesions visible on crowns of all inoculated plants. Noninoculated plants did not show any symptoms. To our knowledge, this is the first report of P. cactorum attacking strawberry plants in Spain. References: (1) S. N. Jeffers and S. B. Martin. Plant Dis. 70:1038, 1986. (2) G. M. Waterhouse and J. M. Waterston. No. 111 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, UK, 1996.


Phyton ◽  
2016 ◽  
Vol 85 (1) ◽  
pp. 246-248
Author(s):  
Moshrefi Zarandi D ◽  
MM Aminaee ◽  
S Rezaee ◽  
A Sharzei

Plant Disease ◽  
2021 ◽  
Author(s):  
Marcus Vinicius Marin ◽  
Teresa E Seijo ◽  
Ellias Zuchelli ◽  
Natalia A. Peres

Phytophthora cactorum and P. nicotianae cause leather rot on fruit and crown rot (PhCR) of strawberry plants. Leather rot is not a common disease in Florida; however, up to 50% yield loss has been reported in harvests following intense rainfall events. PhCR is an important disease worldwide and is characterized by a sudden wilting and collapse of plants. Mefenoxam is the most effective and widely used fungicide to control both diseases. P. cactorum and P. nicotianae isolates from leather rot and PhCR have been collected from multiple strawberry fields in Florida since 1997 and the sensitivity of 185 isolates was tested at 0, 0.05, 0.5, 5 and 100 µg/ml. EC50 values of sensitive isolates ranged from 0.05 to 1 µg/ml. Resistance to mefenoxam (EC50 values > 100 µg/ml) was found among P. cactorum isolates collected after 2015 but no resistance was found in P. nicotianae isolates. During the 2015-16, 2016-17, 2017-18, and 2018-19 seasons, resistance was detected on 9, 10, 21, and 23% of the isolates collected, respectively. Mefenoxam-resistant isolates originated from three of the 24 strawberry nurseries monitored. This is the first report of the occurrence of P. cactorum resistance to mefenoxam in Florida, suggesting that alternative control strategies are needed to avoid the increase of mefenoxam-resistant populations of P. cactorum in Florida fields.


Plant Disease ◽  
2020 ◽  
pp. PDIS-05-20-1045
Author(s):  
H.-Y. Wu ◽  
C.-Y. Tsai ◽  
Y.-M. Wu ◽  
H.-A. Ariyawansa ◽  
C.-L. Chung ◽  
...  
Keyword(s):  

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


Sign in / Sign up

Export Citation Format

Share Document