scholarly journals Race and Virulence Dynamics of Puccinia triticina in China During 2000–2006

Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1601-1607 ◽  
Author(s):  
T. G. Liu ◽  
W. Q. Chen

Wheat leaf rust, caused by Puccinia triticina, is an important foliar disease of wheat in China. The dynamics of races and virulence in P. triticina populations in China during 2000 to 2006 were studied. Leaf rust samples were collected during surveys of wheat fields and trap nurseries in 16 provinces, and provided by coworkers throughout China. The virulence of single-pustule isolates was determined on near-isogenic Thatcher lines for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, and Lr30, and races were denominated using the Prt code system. During 2000 to 2006, 79 races were identified from a total of 613 isolates. Races PHT (23.7%), THT (14.7%), PHJ (11.4%), and THJ (4.2%) were the four common races, all avirulent to Lr9 and Lr24. The frequency of isolates with virulence to Lr1, Lr2c, Lr3, Lr11, Lr16, Lr17, and Lr26 was over 80%, and these isolates were widely distributed in China, whereas the frequencies of virulence to Lr9, Lr19, Lr24, Lr25, Lr28, and Lr29 were 0.2 to 2.5%. The diversity of virulence phenotypes of Chinese P. triticina populations appeared to increase from 2000 to 2006. P. triticina races and virulences in China appear to be isolated from those in other countries.

Plant Disease ◽  
1997 ◽  
Vol 81 (6) ◽  
pp. 582-586 ◽  
Author(s):  
T. Hussien ◽  
R. L. Bowden ◽  
B. S. Gill ◽  
T. S. Cox ◽  
D. S. Marshall

The objective of this study was to test the performance of four new wheat leaf rust resistance genes previously transferred from wild relatives of common wheat. Leaf rust resistance gene Lr43, in wheat germplasm line KS92WGRC16, was originally from Aegilops tauschii. A second resistance gene, in line KS92WGRC23, was transferred from Triticum monococcum var. monococcum. Two other genes, in lines KS93U3 and KS96WGRC34, were obtained from T. monococcum var. boeoticum. In greenhouse tests, the typical low infection types produced by these lines were fleck (;), immune (0), fleck with chlorosis (;C), and heterogeneous (X-) for KS92WGRC16, KS92WGRC23, KS96WGRC34, and KS93U3, respectively. In field tests in Kansas and Texas, KS92WGRC23 and KS92WGRC16 were highly resistant. KS93U3 was moderately resistant in Kansas but moderately resistant to moderately susceptible in Texas. KS96WGRC34 was moderately resistant in Kansas but moderately resistant to susceptible in Texas. Greenhouse adult-plant tests with race PBJL of Puccinia recondita f. sp. tritici indicated that KS92WGRC16, KS92WGRC23, and KS96WGRC34 were highly resistant, but KS93U3 gave a moderately resistant reaction. Growth-chamber studies in different environments (12, 16, 20, and 24°C) showed slight temperature effects on the expression of resistance in KS96WGRC34 but not in the other lines. Tests with nine races of P. recondita f. sp. tritici indicated that only KS92WGRC16 was resistant to all the races. Races PNML and PNMQ were virulent on KS92WGRC23, and race TFGL was virulent on both KS93U3 and KS96WGRC34. The genes in the four germplasm lines should be used in combination with other resistance genes to prolong their usefulness.


Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 288-291 ◽  
Author(s):  
J. A. Kolmer

Collections of Puccinia triticina were made from rust-infected wheat leaves in Georgia, South Carolina, North Carolina, and Virginia in 1999 to examine if these states can be considered as a single epidemiological unit for virulence phenotypes of the wheat leaf rust pathogen. Singleuredinial isolates derived from the leaf rust collections were processed for identification of virulence phenotypes on seedling plants in greenhouse tests. Twenty-one virulence phenotypes from 253 isolates were described based on infection type to 16 Thatcher wheat lines near-isogenic for leaf rust resistance genes. Virulence phenotype MBRK (virulent to leaf rust resistance genes Lr1, Lr3, Lr3ka, Lr11, Lr30, Lr10, Lr14a, and Lr18) was the most common phenotype in the region, at 38.7% of all isolates. Phenotype TLGF (virulent to Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr11, Lr14a, and Lr18) was the second most common phenotype overall, at 33.8% of isolates. Twenty-nine isolates selected on the basis of seedling virulence phenotypes also were tested for virulence to adult wheat plants with the resistance genes Lr12, Lr13, Lr22b, and Lr34. In all, 23 isolates were avirulent to Lr12 and 26 isolates were virulent to Lr13. All isolates had fewer and smaller uredinia on the Thatcher line with Lr34 compared with Thatcher. The widespread occurrence of the predominant P. triticina virulence phenotypes throughout the region indicated that the South Atlantic states should be considered as a single epidemiological area for wheat leaf rust. Some virulence phenotypes which occurred at lower frequencies were found primarily in the Coastal Plain and mountains of North Carolina or in breeding plots in southern Georgia. Localized populations of P. triticina may develop in the South Atlantic region due to overwintering of leaf rust infections or specific selection by leaf rust resistance genes in wheat cultivars.


2015 ◽  
Vol 122 (2) ◽  
pp. 91-99
Author(s):  
Xuejun Wei ◽  
Heshan Zhang ◽  
Dongdong Du ◽  
Wenxiang Yang ◽  
Daqun Liu

2012 ◽  
Vol 37 (12) ◽  
pp. 2158-2166 ◽  
Author(s):  
Ya-Ya HU ◽  
Na ZHANG ◽  
Lin-Mao LI ◽  
Wen-Xiang YANG ◽  
Da-Qun LIU

2018 ◽  
Vol 54 (No. 1) ◽  
pp. 1-8
Author(s):  
Z. Ren ◽  
Z. Li ◽  
L. Shi ◽  
X. Wang ◽  
L. Zhu ◽  
...  

Common wheat (Triticum aestivum L.) is the major crop cultivated in Xinjiang and Anhui provinces of China. The climate in these two provinces is favourable for wheat leaf rust (Puccinia triticina) (Pt) infection. Here, we demonstrate a detailed investigation on the leaf rust resistance of 60 major wheat cultivars cultivated in these two regions. A mixture of high virulent Pt races (THTT, THTS, THTQ and PHPS) were used to phenotype all the collected wheat cultivars at an adult plant stage. Phenotypic disease severity (FDS) and the area under the disease progress curve (AUDPC) for each of these wheat cultivars were calculated. Among all the tested wheat cultivars, three cultivars (Xindong20, Xindong 29 and 99AR142-1) with the lowest FDS and AUDPC may carry major resistance genes. Twenty-seven cultivars (45% of the total tested ones) showed a relatively lower resistance with an average of 12.52% FDS and 126.3 AUDPC. Minor resistance or slow rusting genes may be present in this group of cultivars. Molecular markers for leaf rust resistance genes Lr1, Lr9, Lr19, Lr24, Lr26 and Lr34 were further used for the genotypic screening. Lr1, Lr19, Lr26 and Lr34 were detected in 19 (31.7%), 1 (1.7%), 12 (20%) and 6 (10%) wheat cultivars, respectively. Neither Lr9 nor Lr24 could be detected in any of the tested cultivars. These results will greatly improve wheat molecular breeding for leaf rust resistance in these areas.


2008 ◽  
Vol 59 (3) ◽  
pp. 197 ◽  
Author(s):  
B. S. Gill ◽  
L. Huang ◽  
V. Kuraparthy ◽  
W. J. Raupp ◽  
D. L. Wilson ◽  
...  

Wild relatives of wheat are useful sources of alien resistance genes for wheat breeding. The objective of this review is to document research on the evaluation, transfer, and molecular analysis of alien resistance to wheat leaf rust especially in Aegilops tauschii, the diploid D-genome donor of common wheat. Nine named resistance genes (Lr1, Lr2, Lr15, Lr21, Lr22, Lr32, Lr34, Lr39, and Lr42) occur in the D genome. Twelve new leaf rust resistance genes have been documented in Ae. tauschii. The south-west Caspian Sea region is the centre of genetic diversity for seedling resistance. Adult-plant resistance is widespread in all geographic regions and should be exploited more in the future. Lr1 and Lr21 have been cloned and are typical NBS-LRR genes. The recent documentation of cryptic introgressions of Lr57/Yr40 from Ae. geniculata and Lr58 from Ae. triuncialis offers exciting possibilities for transferring alien genes without linkage drag. Both Lr21 and Lr34 presumably arose during or following the origin of common wheat ~8000 years ago. Leaf rust resistance genes often are located towards the physical ends of wheat chromosomes. These regions are known to be high in recombination, and this may explain their rapid rate of evolution.


1999 ◽  
Vol 35 (No. 3) ◽  
pp. 85-92
Author(s):  
P. Bartoš ◽  
J. Huszár ◽  
E. Herzová

In 1997–1998 virulence of the leaf rust population was studied on near isogenic Thatcher lines with the genes for resistance Lr1, Lr2a, Lr2b, Lr2c, Lr3, Lr9, Lrll, Lr15, Lr/7, Lr19, Lr21, Lr23, Lr24, Lr26 and Lr28, and on the standard differentials Mala­ koff, Carina, Brevit, Webster, Loros, Mediterranean, Hussar, Democrat and the supplemental cultivar Salzmtinder Bartweizen. All 55 analyzed rust samples were avirulent on Lr9, Lr19, Lr24 and Lr28.On the standard differentials, races 61SaBa, 77SaBa, 77/57SaBa, 2SaBa, 77, 12SaBa, 62SaBa, 6, 6SaBa and 14 were determined. Races 61SaBa and 77SaBa (77/57SaBa) prevailed in both years. Races 6 and 6SaBa were found for the first time. The effectiveness of leaf rust resistance genes in registered cultivars under field conditions in variety trials is discussed.


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Z. F. Li ◽  
X. C. Xia ◽  
Z. H. He ◽  
X. Li ◽  
L. J. Zhang ◽  
...  

Identification of resistance genes is important for developing leaf rust resistant wheat (Triticum aestivum) cultivars. A total of 102 Chinese winter wheat cultivars and advanced lines were inoculated with 24 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. These genotypes were also planted in the field for characterization of slow rusting responses to leaf rust in the 2006–07 and 2007–08 cropping seasons. Fourteen leaf rust resistance genes—Lr1, Lr2a, Lr3bg, Lr3ka, Lr14a, Lr16, Lr17a, Lr18, Lr20, Lr23, Lr24, Lr26, Lr34, and LrZH84—either singly or in combinations, were postulated in 65 genotypes, whereas known resistance genes were not identified in the other 37 accessions. Resistance gene Lr26 was present in 44 accessions. Genes Lr14a and Lr34 were each detected in seven entries. Lr1 and Lr3ka were each found in six cultivars, and five lines possessed Lr16. Lr17a and Lr18 were each identified in four lines. Three cultivars were postulated to possess Lr3bg. Genes Lr20, Lr24, and LrZH84 were each present in two cultivars. Each of the genes Lr2a and Lr23 may exist in one line. Fourteen genotypes showed slow leaf rusting resistance in two cropping seasons.


2009 ◽  
Vol 99 (6) ◽  
pp. 750-758 ◽  
Author(s):  
M. E. Ordoñez ◽  
J. A. Kolmer

Wheat leaf rust caused by Puccinia triticina is widely distributed in the wheat growing regions of the United States and Canada, and is subject to selection for virulence phenotype by leaf rust resistance genes in wheat cultivars. The objective of this study was to determine the number of genetically differentiated groups of P. triticina that are currently present in North America. In total, 148 isolates of P. triticina from the 1980s to 2005 were collected from wheat-growing regions of the United States and Canada and tested for virulence on 20 lines of wheat with single genes for leaf rust resistance and for molecular genotype with 23 simple sequence repeat (SSR) markers. In total, 91 virulence phenotypes and 65 SSR genotypes were found. After removal of isolates with identical virulence and SSR genotypes, 125 isolates were included for further analysis. Bayesian cluster analysis indicated five different groups of isolates based on SSR genotypes that also differed for virulence to leaf rust resistance genes Lr2a, Lr2c, Lr3bg, Lr17, and Lr28. Isolates avirulent to Lr14a and Lr20 that have increased since 2003 had SSR genotypes identical or similar to older isolates in one of the five groups, indicating that these isolates were derived by mutation from the previously existing population of P. triticina. The representative collection of P. triticina isolates had characteristics consistent with an asexual dikaryotic population of genetically differentiated groups of SSR genotypes with high levels of heterozygosity and disequilibrium within which stepwise mutation at avirulence or virulence loci regularly occurs.


Sign in / Sign up

Export Citation Format

Share Document