scholarly journals First Report of Bacterial Soft Rot Disease on Mammillaria mystax Caused by Enterobacter cloacae subsp. dissolvens in Mexico

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1536-1536
Author(s):  
Guadalupe Reyes-García ◽  
Santo Ángel Ortega-Acosta ◽  
Francisco Palemón-Alberto ◽  
Yanet Romero Ramírez ◽  
Jeiry Toribio-Jiménez ◽  
...  
2020 ◽  
Vol 8 (5) ◽  
pp. 697 ◽  
Author(s):  
Jieling Li ◽  
Ming Hu ◽  
Yang Xue ◽  
Xia Chen ◽  
Guangtao Lu ◽  
...  

Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.


2020 ◽  
Vol 158 (3) ◽  
pp. 773-780
Author(s):  
A. Balamurugan ◽  
A. Kumar ◽  
K. Sakthivel ◽  
M. Ashajyothi ◽  
Kuleshwar Prasad Sahu ◽  
...  

2018 ◽  
Vol 63 (2) ◽  
pp. 201-205
Author(s):  
Shahadat HOSSAIN ◽  
Abu Ashraf KHAN ◽  
Md. Mahbubur RAHMAN ◽  
Kazuhiro IIYAMA ◽  
Naruto FURUYA

2019 ◽  
Vol 101 (3) ◽  
pp. 797-798 ◽  
Author(s):  
Wei-An Tsai ◽  
Pei-Rong Lin ◽  
Chien-Jui Huang

Plant Disease ◽  
2007 ◽  
Vol 91 (1) ◽  
pp. 109-109 ◽  
Author(s):  
M. K. Kim ◽  
J. S. Ryu ◽  
Y. H. Lee ◽  
H. D. Yun

The king oyster mushroom, Pleurotus eryngii, has become a popular crop because of its unique flavor and texture and is cultivated in many areas in Korea. In 2003, symptoms of water-soaked lesions and soft rot in the stipes and pileus of cultivated P. eryngii was observed in Jinju, Korea. Diseased tissue was plated on nutrient media. Dominate colonies were yellow, convex, circular with smooth margins, and had a shiny texture. Computer analysis of the data gathered, using the API kit (50CHE, bioMérieux, Marcy-l'Etoile, France), showed that the strain belongs to the Enterobacteriaceae. Although the API system did not give an exact identification, the metabolic profile of the bacterial strain closely resembled the database profile of Pantoea sp. (positive for acid production from the fermentation of d-fructose, d-galactose, d-glucose, d-trehalose, and d-ribose and negative for oxidase, urease, pectate, and thiosulfate). The 16S rDNA sequence of the bacterium was determined (GenBank Accession No. AY530796). When compared with those in GenBank, the bacterium was determined to belong to the Enterobacteriaceae family of the Gammaproteobacteria, and the highest degree of sequence similarity was found to be with Pantoea ananatis strain BD 588 (97.4%) and Pantoea ananatis strain Pna 97-1 (97.3%). In the phylogenetic tree, the bacterium clearly related to the Pantoea lineage, as evidenced by the high bootstrap value. A BLAST search with 16S rDNA sequence of the bacterium supported the API results that the isolate belongs to a species of Pantoea. Pathogenicity tests of this new Pantoea isolate were carried out with bacterial suspensions (approximately 1 × 106 CFU/ml) that were grown for 24 h in Luria-Bertani broth cultures. These were used to inoculate directly on the mycelia of P. eryngii that had been cultivated for 35 days in a plastic bottle. The water and broth were also inoculated to another set of bottles as a control experiment. Inoculated bottles were incubated in a cultivation room at 16 to 17°C with relative humidity between 80 and 95%. Early symptoms of the disease included a dark brown water drop that developed on hypha and primordium of the mushrooms after 5 to 7 days. After 13 days, water-soaked lesions developed on the stipes and pileus, and the normal growth of the mushrooms was inhibited. An offensive odor then developed along with a severe soft rot that was similar to the disease symptoms observed under natural conditions. Mushrooms in control bottles did not develop symptoms. Koch's postulates were fulfilled by isolating bacteria from typical lesions from inoculated mushrooms that were identical to the inoculated strain in colony morphology and biochemical characteristics. Pantoea ananatis was first reported as a pathogen of pineapple fruit causing brown rot (3). Several bacterial diseases, such as brown blotch on cultivated mushrooms by Pseudomonas tolaasii (2) and bacterial soft rot on winter mushroom by Erwinia carotovora subsp. Carotovora, causing severe damage to mushrooms are known (1). However, no Pantoea sp. induced disease of edible mushroom has been previously reported. To our knowledge, this is the first report of soft rot disease on P. eryngii caused by Pantoea sp. References: (1) H. Okamoto et al. Ann. Phytopathol. Soc. Jpn. 65:460. 1999. (2) S. G. Paine. Ann. Appl. Biol. 5:206. 1919. (3) F. B. Serrano. Philipp. J. Sci. 36:271, 1928.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 516-516 ◽  
Author(s):  
L. Liao ◽  
R. Hei ◽  
Y. Tang ◽  
S. Liu ◽  
J. Zhou

Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 416-416 ◽  
Author(s):  
J. N. Zhou ◽  
S. Y. Liu ◽  
Y. F. Chen ◽  
L. S. Liao

Clausena lansium, also known as wampee (Clausena wampi), is a plant species native to China, Vietnam, the Philippines, Malaysia, and Indonesia, where it is widely cultivated, and also grown in India, Sri Lanka, Queensland, Florida, and Hawaii, but less frequently (3). The fruit can be consumed fresh or made into juice, jam, or succade. In summer to fall 2014, a soft rot disease was found in a wampee planting region in Yunan County, Guangdong Province, China. On Sept. 18, we collected diseased samples from a wampee orchard with about 20% disease incidence. The infected fruit initially showed pinpoint spots on the peel, water-soaked lesions, and light to dark brown discoloration. Spots expanded in 2 days, and tissues collapsed after 5 days. Severely affected fruit showed cracking or nonodorous decay. Five diseased samples were collected, and causal agents were isolated from symptomatic tissues 1 cm under the peel after surface sterilization in 0.3% NaOCl for 10 min and rinsing in sterile water three times. Tissues were placed on a Luria Bertani (LB) plate for culture. Ten representative isolates were selected for further characterization. No colony was isolated from healthy tissues. Colonies were round, smooth, with irregular edges, and produced a yellow pigment in culture. Biolog identification (Version 4.20.05) showed that all strains were gram negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin but not sorbitol or gelatin. The isolates were identified as Pantoea agglomerans (SIM 0.69). Multilocus sequence analysis (MLSA) was conducted for rapid classification of the strains. Sequences of atpD, gyrB, infB, and rpoB were amplified using corresponding primers (2). All sequences of the 10 isolates were identical in each gene. BLASTn was performed, and maximum likelihood trees based on the concatenated nucleotide sequences of the four genes were constructed using MEGA6. Bootstrap values after 1,000 replicates were expressed as percentages. Results showed that the tested strain named CL1 was most homologous to P. anthophila, with 98% identity for atpD (KM521543), 100% for gyrB (KM521544), infB (KM521545), and rpoB (KM521546). The 16S rRNA sequence (KM521542) amplified by primers 27f and 1492r shared 99% identity with that of P. anthophila M19_2C (JN644500). P. anthophila was previously reclassified from P. agglomerans (3); therefore, we suggest naming this wampee pathogen P. anthophila. Subsequently, 10 wampee fruits were injected with 20 μl of bacterial suspension (1 × 108 CFU/ml) of strains CL1 and CL2, respectively, and another 10 were injected with 20 μl of LB medium as controls, all kept at 28°C for 4 days. Symptoms similar to those of natural infections were observed on inoculated fruits but not on the negative controls. Bacteria were isolated from diseased tissues and further identified as P. anthophila by gyrB sequencing. P. anthophila was reported to naturally infect balsam and marigold (1,2). To our knowledge, this is the first report of P. anthophila naturally causing soft rot disease and cracking on C. lansium (wampee). References: (1) C. Brady et al. Syst. Appl. Microbiol. 31:447, 2008. (2) C. Brady et al. Int. J. Syst. Evol. Microbiol. 59:2339, 2009. (3) J. Morton. Fruits of Warm Climates. Echo Point Books & Media, Miami, FL, 1987.


Sign in / Sign up

Export Citation Format

Share Document