scholarly journals Assessment of Resistance in Potato Cultivars to Verticillium Wilt Caused by Verticillium dahliae and Verticillium nonalfalfae

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1357-1362
Author(s):  
Haiyuan Li ◽  
Zhipeng Wang ◽  
Xiaoping Hu ◽  
Wenjing Shang ◽  
Ruiqing Shen ◽  
...  

Verticillium wilt caused by Verticillium spp., also called potato early dying disease, is one of the most serious soilborne diseases affecting potato production in China. The disease has been expanding into most potato production areas over the past few years. Information on host resistance against Verticillium wilt among the potato cultivars in China is scarce, but it is critical for sustainable management of the disease. This study, therefore, evaluated 30 commercially popular potato cultivars against Verticillium dahliae strain Vdp83 and Verticillium nonalfalfae strain Vnp24, two well-characterized strains causing Verticillium wilt of potato in China. Both strains were isolated from diseased potato plants, and they were previously proven to be highly virulent. Ten plants of each cultivar were inoculated with the V. dahliae strain and incubated on greenhouse benches. Symptoms were rated at weekly intervals, and the relative area under the disease progress curve was calculated. The experiment was repeated once, and nonparametric analysis was used to calculate the relative marginal effects and the corresponding confidence intervals. Five resistant cultivars and four susceptible cultivars identified from the analyses were then challenged with the V. nonalfalfae strain. Cultivar responses to V. nonalfalfae were like those exhibited against V. dahliae, except for one cultivar. This study showed that resistance among potato cultivars exists in China against Verticillium spp. and that the resistance to V. dahliae identified in potato is also effective against the other Verticillium species that cause Verticillium wilt with a few exceptions. Cultivars identified as resistant to Verticillium wilt can be deployed to manage the disease until the breeding programs develop new cultivars with resistance from the sources identified in this study.

1999 ◽  
Vol 89 (9) ◽  
pp. 782-788 ◽  
Author(s):  
M. Arbogast ◽  
M. L. Powelson ◽  
M. R. Cappaert ◽  
L. S. Watrud

Six potato cultivars were grown with or without the addition of Verticillium dahliae inoculum and were watered at 50, 75, or 100% estimated consumptive use. The applied water × cultivar interaction was significant (P = 0.009 and P = 0.001 for 1996 and 1997, respectively) for the relative area under the senescence progress curve (RAUSPC). With a decrease in water, there was an increase in RAUSPC. A significant interaction of inoculum density × cultivar also was found, based on RAUSPC (P = 0.0194 and P = 0.0033 for 1996 and 1997, respectively). In V. dahliae-infested plots, ‘Katahdin’ and ‘Ranger Russet’ were resistant to Verticillium wilt. Population size of V. dahliae in stem apices was significantly lower in ‘Katahdin’ in both 1996 and 1997 (P = 0.0001) and in ‘Ranger Russet’ in 1997 (P = 0.0001) than in the other cultivars. ‘Russet Burbank’ and ‘Shepody’ had large apical stem populations of V. dahliae and higher RAUSPC values associated with both V. dahliae inoculum and decreased amount of applied water. Marketable tuber yield was unaffected by V. dahliae in both years. Cultivar resistance to Verticillium wilt was related to cultivar tolerance to moisture deficit stress. Results suggest that moisture deficit stress response has the potential to be a useful tool in protocols for screening potato for Verticillium resistance.


2007 ◽  
Vol 97 (7) ◽  
pp. 865-872 ◽  
Author(s):  
Z. K. Atallah ◽  
J. Bae ◽  
S. H. Jansky ◽  
D. I. Rouse ◽  
W. R. Stevenson

Potato early dying (PED), also known as Verticillium wilt, caused by Verticillium dahliae, is a seasonal yield-limiting disease of potato worldwide, and PED-resistant cultivars currently represent only a small percentage of potato production. In this study, we developed a real-time quantitative polymerase chain reaction (Q-PCR) approach to detect and quantify V. dahliae. The efficiency of the designed primer pair VertBt-F/VertBt-R, derived from the sequence of the β-tubulin gene, was greater than 95% in monoplex Q-PCR and duplex (using Plexor technology) procedures with primers PotAct-F/PotAct-R, obtained from the sequence of the actin gene, designed for potato. As few as 148 fg of V. dahliae DNA were detected and quantified, which is equivalent to five nuclei. Q-PCR detected V. dahliae in naturally infected air-dried potato stems and fresh stems of inoculated plants. Spearman correlations indicated a high correlation (upward of 80%) between V. dahliae quantifications using Q-PCR and the currently used plating assays. Moreover, Q-PCR substantially reduced the variability compared with that observed in the plating assay, and allowed for the detection of V. dahliae in 10% of stem samples found to be pathogen free on the culture medium. The described Q-PCR approach should provide breeders with a more sensitive and less variable alternative to time-consuming plating assays to distinguish response of breeding lines to colonization by V. dahliae.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1372-1378 ◽  
Author(s):  
F. J. López-Escudero ◽  
M. A. Blanco-López

An experiment was conducted in microplots which were artificially infested with a defoliating isolate of Verticillium dahliae using seven different treatments of inoculum densities ranging from 0 to 10 microsclerotia per gram of soil (ppg). The experiment was conducted in Andalucía (southern Spain), and the susceptible Spanish olive cv. Picual was used to determine the relationship between pathogen inoculum density and the progress of Verticillium wilt of olive (VWO). The inoculum, produced on a sodium pectate cellophane medium, was found to efficiently infect olive trees. Symptoms first appeared 30 weeks after the trees were transplanted into infested soil. Periods of increasing disease incidence in the following seasons and years were mainly during spring and autumn, particularly in the second year after planting. Olive trees exhibited a high susceptibility to the defoliating pathotype of the pathogen, even at very low inoculum levels; in fact, diseased plants were encountered throughout the experiment regardless of the inoculum density treatment. Inoculum densities greater than 3 ppg in the soil resulted in final disease incidence greater than 50% for the trees after 2.5 years. Therefore, these inoculum densities must be considered very high for olive trees. There were no differences in final disease incidence, mean symptom severity, or area under the disease progress curve between plots infested with 10 or 3.33 ppg, whereas other treatments exhibited lower values for each of these disease parameters. The temporal variations of disease incidence and severity were highly correlated for the higher inoculum density treatments, with r2 values ranging from 0.92 to 0.84 for disease incidence and from 0.93 to 0.88 for severity. However, r2 was slightly lower for the treatments involving lower inoculum densities of the pathogen in microplots. The slopes of the linear regression curves were statistically different for nearly all the inoculum density treatments. Positive correlation was found between the initial inoculum density and final disease incidence values after the study period that was accurately explained by mathematical models. The results suggest that susceptible olive cultivars should not be planted in soils infested with virulent defoliating pathotypes of V. dahliae. Results also clarify that inoculum density levels obtained from field soil analyses can be used for establishing a risk prediction system with a view to controlling VWO in olive tree plantations.


Plant Disease ◽  
2018 ◽  
Vol 102 (10) ◽  
pp. 1958-1964 ◽  
Author(s):  
Rui Jing ◽  
Haiyuan Li ◽  
Xiaoping Hu ◽  
Wenjing Shang ◽  
Ruiqing Shen ◽  
...  

Potato (Solanum tuberosum L.) is one of the most important staple foods in many parts of the world including China. In recent years, Verticillium wilt has become a severe threat to potato production in China. During 2015 to 2016, 287 samples of symptomatic potato plants were collected from 15 counties in five provinces from northern China. One hundred and eighty-seven Verticillium-like colonies were isolated from these samples and identified to species based on cultural and morphological characteristics, and multigene phylogeny based on the partial sequences of actin (ACT), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GPD), and tryptophan synthase (TS) genes. A consensus-rooted most parsimonious phylogenetic tree was generated from the data. One hundred and fifteen isolates comprising 61.5% of the total were identified as Verticillium dahliae, and the remaining 38.5% of the isolates were identified as V. nonalfalfae. V. dahliae was widely distributed in Shaanxi (84.1%), Inner Mongolia (76.7%), Gansu (12.8%), and Qinghai (100%, representing a single isolate). V. dahliae was not recovered from the samples in Ningxia. V. nonalfalfae dominated the collections from Gansu (87.2%) and Ningxia (100%) but was also recovered from Shaanxi (15.9%) and Inner Mongolia (23.3%) at lower frequencies. Neither V. albo-atrum nor V. alfalfae was recovered from the sampled areas. The V. nonalfalfae isolates were predominantly isolated from the samples collected from altitudes above 1,800 m, and in contrast, V. dahliae isolates were mainly recovered from fields sampled below 1,800 m. The optimum temperature for the colony growth of V. nonalfalfae was lower (20°C) than that for V. dahliae (25°C). Pathogenicity tests demonstrated that V. dahliae and V. nonalfalfae were both pathogens of potato Verticillium wilt, with V. dahliae isolates exhibiting higher virulence than V. nonalfalfae isolates regardless of the collection area of the species. This is the first documentation of V. nonalfalfae infecting S. tuberosum in China and the higher altitudes associated with infections of V. nonalfalfae anywhere in the world.


HortScience ◽  
2015 ◽  
Vol 50 (9) ◽  
pp. 1332-1337 ◽  
Author(s):  
Jesse Wimer ◽  
Debra Inglis ◽  
Carol Miles

Verticillium wilt caused by Verticillium dahliae is a serious disease for watermelon growers in Washington State. Grafting represents a possible alternative disease management strategy, but little is known about rootstock resistance to verticillium wilt or the performance of grafted watermelon in the different production regions of the state. In this study, verticillium wilt severity, yield, and fruit quality were evaluated at three contrasting field sites in Washington using verticillium wilt-susceptible ‘Sugar Baby’ (diploid) watermelon grafted onto four commercial rootstock cultivars (Marvel, Rampart, Tetsukabuto, and Titan); nongrafted ‘Sugar Baby’ was included as the control. Verticillium dahliae soil densities varied at each site (<1.0, 5.7, and 18.0 colony-forming units (cfu)/g soil at Othello, Eltopia, and Mount Vernon, respectively). Area under disease progress curve (AUDPC) values differed significantly among treatments at Eltopia and Mount Vernon. Nongrafted ‘Sugar Baby’ had the highest AUDPC value at all three sites, while ‘Sugar Baby’ grafted onto ‘Tetsukabuto’ had the lowest AUDPC value at Eltopia and Mount Vernon. Nongrafted ‘Sugar Baby’ also had the lowest fruit weight per plant at all sites, but ‘Sugar Baby’ grafted onto ‘Tetsukabuto’ had the highest fruit weight per plant at Eltopia and Mount Vernon. Marketable fruit weight per plant did not differ among treatments at Othello. Yield was negatively correlated with AUDPC values at both Eltopia and Mount Vernon. Fruit number per plant was only significantly impacted at Eltopia, where ‘Sugar Baby’ grafted onto ‘Tetsukabuto’ had more fruit per plant than all other treatments except ‘Sugar Baby’ grafted onto ‘Rampart’. Fruit quality (flesh firmness, total soluble solids, and lycopene content) was unaffected by grafting at either Othello or Eltopia, except for increased flesh firmness for ‘Sugar Baby’ grafted onto ‘Marvel’ and ‘Titan’ as compared with nongrafted ‘Sugar Baby’ at Eltopia. At season’s end, plants were sampled from all treatments at Eltopia and Mount Vernon and assayed for V. dahliae. Microsclerotia typical of this organism were observed in all samples. Results from this study indicate that verticillium wilt of watermelon can be successfully managed by grafting when the V. dahliae soil density exceeds 5.0 cfu/g in Washington. In addition, grafting does not reduce fruit quality and using certain rootstocks can improve the quality of flesh firmness at certain locations.


Plant Disease ◽  
2007 ◽  
Vol 91 (9) ◽  
pp. 1137-1141 ◽  
Author(s):  
J. Bae ◽  
Z. K. Atallah ◽  
S. H. Jansky ◽  
D. I. Rouse ◽  
W. R. Stevenson

Potato early dying (PED), caused by Verticillium dahliae, is a chronic yield-limiting disease of potato (Solanum tuberosum). In this study, we describe the colonization dynamics of V. dahliae in two potato cultivars with varying responses to PED. We utilized a quantitative real-time polymerase chain reaction (Q-PCR) assay to assess the colonization and spatial progression of V. dahliae in cvs. Ranger Russet (moderately resistant) and Russet Norkotah (highly susceptible). Ninety plants per cultivar were inoculated with a conidial suspension in the greenhouse. Every 2 weeks until week 10, we collected basal samples from 15 plants, and repeatedly sampled the growing apices of another 15 plants. The mean infection coefficient (IC) values in the basal and apical samples were significantly lower in cv. Ranger Russet at all five sampling dates. The pathogen was detected in basal samples of both cultivars by week 2, and in apical samples of cv. Russet Norkotah at week 4 and of cv. Ranger Russet at week 6. Colonization of cv. Russet Norkotah consistently increased in apical and basal samples during the 10 weeks, while it plateaued after week 6 in cv. Ranger Russet. Differences in response to PED appear associated with the speed of colonization and the establishment of a higher population density by V. dahliae in the plant.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 608-618 ◽  
Author(s):  
J. S. Pasche ◽  
I. Mallik ◽  
N. R. Anderson ◽  
N. C. Gudmestad

An increase in the stringency for higher quality potato tubers and restrictions on the use of soil fumigants, among other factors, has garnered renewed interest in Verticillium wilt, particularly in russet-skinned cultivars grown for processing. In response to the needs of producers, breeders have increased efforts in the development of potato cultivars with resistance to Verticillium dahliae Kleb., the primary cause of Verticillium wilt. These efforts have resulted in the release of numerous russet-skinned cultivars with purported resistance to the pathogen. However, because efficient and effective methods to screen germplasm for true resistance do not exist, breeders typically have reported resistance based on the development of wilt symptoms alone. The studies reported here demonstrate the efficiency and practicality of a QPCR method for quantification of V. dahliae in potato stem tissue. This method, developed to detect the target trypsin protease gene of the pathogen, was compared with traditional methods for V. dahliae quantification which involve plating stem tissue or sap onto semi-selective media, as well as to a recently developed QPCR assay which amplifies a region of the β-tubulin gene of V. dahliae. The QPCR assay developed in the studies reported here was demonstrated to be sensitive to 0.25 pg of DNA. Use of the duplex real-time PCR assay, utilizing the potato actin gene to normalize quantification, resulted in clearer differentiation of levels of resistance among eight russet-skinned potato cultivars inoculated in greenhouse trials when compared with traditional plating assays. However, relative levels of resistance among cultivars were similar between traditional plating and QPCR methods, resulting in correlation coefficients greater than 0.93. The assay described here also detected the pathogen in inoculated stem tissue at higher frequencies than both traditional plating assays and a previously developed QPCR assay. The QPCR assay developed here demonstrates rapid, efficient, and accurate quantification of V. dahliae, providing a tool amenable for use by breeding programs on large numbers of clones and selections, and will aid researchers evaluating other control strategies for Verticillium wilt.


Sign in / Sign up

Export Citation Format

Share Document