potato cyst nematode
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 38)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 13 (4) ◽  
pp. 11083
Author(s):  
Sanaa A. HAROON ◽  
Zafar HANDOO ◽  
Mihail KANTOR ◽  
Andrea SKANTAR ◽  
Maria HULT

The golden potato cyst nematode, Globodera rostochiensis (Wollenweber, 1923) Skarbilovich (1959) is a damaging soilborne quarantine pest of Solanum tuberosum (potato) and other solanaceous crops worldwide. In spring of 2021 a survey was conducted in area of Abo El Matamer, Bahera governorates in Egypt. Soil samples were taken in zigzag pattern throughout 65 acres of potato cultivated land and processed in Nematology lab, Fayoum University, Egypt. In June 2021, two hundred soil samples were collected from nearby areas to evaluate the distribution of this potato cyst nematode in other cultivated land located in area of first infection but fortunately the golden potato cyst nematode was not detected from neighboring locations. The nematode species was identified by both morphological and molecular means as Globodera rostochiensis. To our knowledge this is the first molecular and morphological characterization of G. rostochiensis from Egypt.


Planta ◽  
2021 ◽  
Vol 254 (6) ◽  
Author(s):  
Alessandra Guerrieri ◽  
Kristýna Floková ◽  
Lieke E. Vlaar ◽  
Mario L. Schilder ◽  
Gertjan Kramer ◽  
...  

Abstract Main conclusion Solanoeclepin A is a hatching stimulant for potato cyst nematode in very low (pM) concentrations. We report a highly sensitive method for the analysis of SolA in plant root exudates using UHPLC-MS/MS and show that there is considerable natural variation in SolA production in Solanum spp. corresponding with their hatching inducing activity. Abstract Potato cyst nematode (PCN) is a plant root sedentary endoparasite, specialized in the infection of solanaceous species such as potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Earlier reports (Mulder et al. in Hatching agent for the potato cyst nematode, Patent application No. PCT/NL92/00126, 1996; Schenk et al. in Croat Chem Acta 72:593–606, 1999) showed that solanoeclepin A (SolA), a triterpenoid metabolite that was isolated from the root exudate of potato, induces the hatching of PCN. Its low concentration in potato root exudate has hindered progress in fully understanding its hatching inducing activity and exploitation in the control of PCN. To further investigate the role of SolA in hatching of PCN, the establishment of a highly sensitive analytical method is a prerequisite. Here we present the efficient single-step extraction and UHPLC-MS/MS based analysis for rapid determination of SolA in sub-nanomolar concentrations in tomato root exudate. This method was used to analyze SolA production in different tomato cultivars and related solanaceous species, including the trap crop Solanum sisymbriifolium. Hatching assays with PCN, Globodera pallida, with root exudates of tomato genotypes revealed a significant positive correlation between SolA concentration and hatching activity. Our results demonstrate that there is natural variation in SolA production within solanaceous species and that this has an effect on PCN hatching. The analytical method we have developed can potentially be used to support breeding for crop genotypes that induce less hatching and may therefore display reduced infection by PCN.


Author(s):  
Mirela C Coke ◽  
Sophie Mantelin ◽  
Peter Thorpe ◽  
Catherine J Lilley ◽  
Kathryn M Wright ◽  
...  

Abstract The potato cyst nematode Globodera pallida acquires all of its nutrients from an elaborate feeding site that it establishes in a host plant root. Normal development of the root cells is re-programmed in a process coordinated by secreted nematode effector proteins. The biological function of the G. pallida GpIA7 effector was investigated in this study. GpIA7 is specifically expressed in the subventral pharyngeal glands of pre-parasitic stage nematodes. Ectopic expression of GpIA7 in potato plants affected plant growth and development, suggesting a potential role for this effector in feeding site establishment. Potato plants overexpressing GpIA7 were shorter, with reduced tuber weight and delayed flowering. We provide evidence that GpIA7 associates with the plant growth regulator StEBP1 (ErbB-3 epidermal growth factor receptor-binding protein 1). GpIA7 modulates the regulatory function of StEBP1, altering the expression level of downstream target genes, including ribonucleotide reductase 2, cyclin D3;1 and retinoblastoma related 1, which are downregulated in plants overexpressing GpIA7. We provide an insight into the molecular mechanism used by the nematode to manipulate the host cell cycle and provide evidence that this may rely, at least in part, on hindering the function of host EBP1.


2021 ◽  
Author(s):  
Janet Rowe

Abstract G. rostochiensis is a world wide pest of temperate areas, including both temperate countries and temperate regions of tropical countries, for example India's Nigrilis region. Distribution is linked to that of the potato crop. Potato cyst nematode is considered to have originated from the Andes region of South America, from where it spread to Europe with potatoes. The ease with which it has been transported across continents proves what a resilient pest it is. The cyst form which adheres to host roots, stolons and tubers and to soil particles during transportation gives rise to new infestations where climate and food source are both available and favourable. Secondary means of dispersal is through the movement of contaminated farm machinery, farming implements and contaminated footwear. Cysts are also successfully spread by wind dispersal, during winter storms or sand storms where top soil is redistributed. Rain which causes flooding and water to run off fields into trenches or irrigation channels also redistributes cysts into adjoining areas.


Author(s):  
Christopher A Bell ◽  
Waddah Mobayed ◽  
Catherine J Lilley ◽  
Peter Urwin

Plants secrete a large array of compounds into the rhizosphere to facilitate interactions with their biotic environment. Some of these exuded-compounds stimulate the hatching of obligate plant-parasitic nematodes, ultimately leading to a detrimental effect on the host plant. Determining these cues can help to provide new mechanisms for control and aid nematode management schemes. Here we show that glucose, fructose and arabinose, which are all present in potato root exudate (PRE), induce hatching of white potato cyst nematode (Globodera pallida) eggs whereas five other PRE-sugars had no effect. Although these monosaccharides resulted in significant hatching none induced the same level as PRE, suggesting that other components, possibly in combination, contribute to stimulation of nematode hatching. Glucose, but not arabinose or fructose, was also observed to attract juvenile G. pallida, indicating that these hatch-inducing components can have different roles in different stages of the life cycle. Applying a solution of these monosaccharides to G. pallida-infested soil pre-potato planting initiated hatching in the absence of a host. Host absence resulted in nematode mortality and a reduction in the G. pallida population. Therefore, subsequent invasion of the crop post-planting was also reduced, compared to untreated soil. Our data suggest that monosaccharide components of PRE play an important role in the hatching and attraction of G. pallida. As a result the hatch-inducing monosaccharides can be applied as a pre-planting treatment to induce hatching and reduce subsequent infection rates.  


Sign in / Sign up

Export Citation Format

Share Document