scholarly journals Leaf spot disease of Orychophragmus violaceus caused by Alternaria tenuissima in China

Plant Disease ◽  
2021 ◽  
Author(s):  
Dongli Liu ◽  
Jing Li ◽  
Saisai Zhang ◽  
Xiangjing Wang ◽  
Wensheng Xiang ◽  
...  

Orychophragmus violaceus (L.) O. E. Schulz, also called February orchid or Chinese violet cress, belongs to the Brassicaceae family and is widely cultivated as a green manure and garden plant in China. During the prolonged rainy period in August 2020, leaf spot disease of O. violaceus was observed in the garden of Northeast Agricultural University, Harbin, Heilongjiang province. One week after the rainy days, the disease became more serious and the disease incidence ultimately reached approximately 80%. The disease symptoms began as small brown spots on the leaves, and gradually expanded to irregular or circular spots. As the disease progressed, spots became withered with grayish-white centers and surrounded by dark brown margins. Later on, the centers collapsed into holes. For severely affected plants, the spots coalesced into large necrotic areas and resulted in premature defoliation. No conidiophores or hyphae were present, and disease symptoms were not observed on other tissues of O. violaceus. To isolate the pathogen, ten leaves with typical symptoms were collected from different individual plants. Small square leaf pieces (5×5 mm) were excised from the junction of diseased and healthy tissues, disinfected in 75% ethanol solution for 1 min, rinsed in sterile distilled water, and then transferred to Petri dishes (9 cm in diameter) containing potato dextrose agar (PDA). After 3 days of incubation at 25 oC in darkness, newly grown-out mycelia were transferred onto fresh PDA and purified by single-spore isolation. Nine fungal isolates (NEAU-1 ~ NEAU-9) showing similar morphological characteristics were obtained and no other fungi were isolated. The isolation frequency from the leaves was almost 90%. On PDA plates, all colonies were grey-white with loose and cottony aerial hyphae, and then turned olive-green and eventually brown with grey-white margins. The fungus formed pale brown conidiophores with sparsely branched chains on potato carrot agar (PCA) plates after incubation at 25 oC in darkness for 7 days. Conidia were ellipsoidal or ovoid, light brown, and ranged from 18.4 to 59.1 × 9.2 to 22.3 µm in size, with zero to two longitudinal septa and one to five transverse septa and with a cylindrical light brown beak (n = 50). Based on the cultural and morphological characteristics, the fungus was tentatively identified as Alternaria tenuissima (Simmons 2007). Genomic DNA was extracted from the mycelia of five selected isolates (NEAU-1 ~ NEAU-5). The internal transcribed spacer region (ITS) was amplified and sequenced using primers ITS1/ITS4 (White et al., 1990). Blast analysis demonstrated that these five isolates had the same ITS sequence, and the ITS sequence of representative strain NEAU-5 (GenBank accession No. MW139354) showed 100% identity with the type strains of Alternaria alternata CBS916.96 and Alternaria tenuissima CBS918.96. Furthermore, the translation elongation factor 1-α gene (TEF), RNA polymerase II second largest subunit (RPB2), and glyceraldehyde 3-phosphate dehydrogenase (GPD) of representative strain NEAU-5 were amplified and sequenced using primers EF1-728F/EF1-986R (Carbone and Kohn 1999), RPB2-5F2/RPB2-5R (Sung et al., 2007), and Gpd1/Gpd2 (Berbee et al., 1999), respectively. The sequences of RPB2, GPD, and TEF of strain NEAU-5 were submitted to GenBank with accession numbers of MW401634, MW165223, and MW165221, respectively. Phylogenetic trees based on ITS, RPB2, GPD, and TEF were constructed with the neighbour-joining and maximum-likelihood algorithms using MEGA software version 7.0. The results demonstrated that strain NEAU-5 formed a robust clade with A. tenuissima CBS918.96 (supported by 99% and 96% bootstrap values) in the neighbour-joining and maximum-likelihood trees. As mentioned above, strain NEAU-5 produced seldomly branched conidial chains on PCA plates. The pattern is consistent with that of A. tenuissima (Kunze) Wiltshire, but distinct from that of A. alternata which could produce abundant secondary ramification (Simmons 2007). Thus, strain NEAU-5 was identified as A. tenuissima based on its morphology and phylogeny. Pathogenicity tests were carried out by inoculating five unwounded leaves with a conidial suspension of strain NEAU-5 (approximately 106 conidia/ml) on five different healthy plants cultivated in garden, and an equal number of leaves on the same plants inoculated with sterilized ddH2O served as negative controls. Inoculated and control leaves were covered with clear plastic bags for 3 days. After 6 days, small brown and irregular or circular spots were observed on all leaves inoculated with conidial suspension, while no such symptoms were observed in the control. The tests were repeated three times. Furthermore, the pathogenicity tests were also performed using 2-month-old potted plants in a growth chamber (28 oC, 90% relative humidity, 12 h/12 h light/dark) with two repetitions. Five healthy plants were inoculated by spraying 20 ml of a conidial suspension of strain NEAU-5 (approximately 106 conidia/ml) onto unwounded leaves. Five other healthy plants were inoculated with sterilized ddH2O as controls. After 7 days, similar symptoms were observed on leaves inoculated with strain NEAU-5, whereas no symptoms were observed in the control. The pathogen was reisolated from the inoculated leaves and identified as A. tenuissima by morphological and molecular methods. In all pathogenicity tests, A. tenuissima could successfully infect unwounded leaves of O. violaceus, indicating a direct interaction between leaves and A. tenuissima. It is known that high humidity and fairly high temperatures can favor the epidemics of Alternaria leaf spot (Yang et al., 2018), and this may explain why severe leaf spot disease of O. violaceus was observed after prolonged rain. Previously, it has been reported that Alternaria brassicicola and Alternaria japonica could cause leaf blight and spot disease on O. violaceus in Hebei and Jiangsu Provinces, China, respectively (Guo et al., 2019; Sein et al., 2020). Although these pathogens could lead to similar disease symptoms on the leaves of O. violaceus, it is easy to distinguish them by the morphological characteristics of conidiophores and ITS gene sequences. To our knowledge, this is the first report of A. tenuissima causing leaf spot disease of O. violaceus in China.

Plant Disease ◽  
2021 ◽  
Author(s):  
Yanxiang Qi ◽  
Yanping Fu ◽  
Jun Peng ◽  
Fanyun Zeng ◽  
Yanwei Wang ◽  
...  

Banana (Musa acuminate L.) is an important tropical fruit in China. During 2019-2020, a new leaf spot disease was observed on banana (M. acuminate L. AAA Cavendish, cv. Formosana) at two orchards of Chengmai county (19°48ʹ41.79″ N, 109°58ʹ44.95″ E), Hainan province, China. In total, the disease incidence was about 5% of banana trees (6 000 trees). The leaf spots occurred sporadically and were mostly confined to the leaf margin, and the percentage of the leaf area covered by lesions was less than 1%. Symptoms on the leaves were initially reddish brown spots that gradually expanded to ovoid-shaped lesions and eventually become necrotic, dry, and gray with a yellow halo. The conidia obtained from leaf lesions were brown, erect or curved, fusiform or elliptical, 3 to 4 septa with dimensions of 13.75 to 31.39 µm × 5.91 to 13.35 µm (avg. 22.39 × 8.83 µm). The cells of both ends were small and hyaline while the middle cells were larger and darker (Zhang et al. 2010). Morphological characteristics of the conidia matched the description of Curvularia geniculata (Tracy & Earle) Boedijn. To acquire the pathogen, tissue pieces (15 mm2) of symptomatic leaves were surface disinfected in 70% ethanol (10 s) and 0.8% NaClO (2 min), rinsed in sterile water three times, and transferred to potato dextrose agar (PDA) for three days at 28°C. Grayish green fungal colonies appeared, and then turned fluffy with grey and white aerial mycelium with age. Two representative isolates (CATAS-CG01 and CATAS-CG92) of single-spore cultures were selected for molecular identification. Genomic DNA was extracted from the two isolates, the internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU rDNA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II second largest subunit (RPB2) were amplified and sequenced with universal primers ITS1/ITS4, LROR/LR5, GPD1/GPD2, EF1-983F/EF1-2218R and 5F2/7cR, respectively (Huang et al. 2017; Raza et al. 2019). The sequences were deposited in GenBank (MW186196, MW186197, OK091651, OK721009 and OK491081 for CATAS-CG01; MZ734453, MZ734465, OK091652, OK721100 and OK642748 for CATAS-CG92, respectively). For phylogenetic analysis, MEGA7.0 (Kumar et al. 2016) was used to construct a Maximum Likelihood (ML) tree with 1 000 bootstrap replicates, based on a concatenation alignment of five gene sequences of the two isolates in this study as well as sequences of other Curvularia species obtained from GenBank. The cluster analysis revealed that isolates CATAS-CG01 and CATAS-CG92 were C. geniculata. Pathogenicity assays were conducted on 7-leaf-old banana seedlings. Two leaves from potted plants were stab inoculated by puncturing into 1-mm using a sterilized needle and placing 10 μl conidial suspension (2×106 conidia/ml) on the surface of wounded leaves and equal number of leaves were inoculated with sterile distilled water serving as control (three replicates). Inoculated plants were grown in the greenhouse (12 h/12 h light/dark, 28°C, 90% relative humidity). Necrotic lesions on inoculated leaves appeared seven days after inoculation, whereas control leaves remained healthy. The fungus was recovered from inoculated leaves, and its taxonomy was confirmed morphologically and molecularly, fulfilling Koch’s postulates. C. geniculata has been reported to cause leaf spot on banana in Jamaica (Meredith, 1963). To our knowledge, this is the first report of C. geniculata on banana in China.


Plant Disease ◽  
2020 ◽  
Author(s):  
Xiao Fei Chen ◽  
Yanqiao He ◽  
Aomen He ◽  
Juxia He ◽  
Qiongqiong Li ◽  
...  

Amygdalus triloba (Rosaceae; previously Prunus triloba) is a deciduous, flowering shrub that is widely used in the greening and beautification of lawns, parks and courtyards in China. In late May 2019, a leaf spot disease of A. triloba was observed on approximately 35% of plants in the Xinjiang Alaer city (40˚33′20′′N, 81˚17′19′′E). The disease symptoms began as small, suborbicular, brown spots on the leaves. As the disease progressed, the spots enlarged and coalesced into large necrotic areas and resulted in premature defoliation. Leaf sections (5 x 5 mm) from infected leaves were surface - sterilized with 75% ethanol for 30 s and 0.1% HgCl2 for 1 min, rinsed three times in sterile distilled water and then incubated on potato dextrose agar (PDA). Fifteen fungal isolates showing similar morphological characteristics were obtained by single-spore isolation. On the PDA plates, all fungal colonies had a dark olive color with loose, cottony mycelium. On the potato carrot agar, the fungus formed unbranched spore chains, but occasionally formed one or two lateral branches. Conidiophores were short, hazel-colored, septae, arising singly, and measuring 15.1 to 61.8 × 1.8 to 4.2 µm (35.2 ± 1.4 × 2.3 ± 0.1 µm, n = 50). Mature conidia were ellipsoidal to ovoid with a short conical beak at the tip, light brown with zero to three longitudinal septa and one to five transverse septa, and measuring 19.3 to 30.8 × 7.2 to 12.5 µm (21.8 ± 0.3 × 9.5 ± 0.2 µm, n = 50). Based on the cultural and morphological traits, the pathogen was preliminary identified as Alternaria tenuissima (Simmons 2007). Genomic DNA was extracted from the representative isolate YALAR-1, and the internal transcribed spacer (ITS) region, the partial coding sequence of endopolygalacturonase (endoPG), the glyceradehyde -3- phosphate dehydrogenase (GAPDA), the partial region of the histone 3 (H3) genes were amplified using primers ITS1/ITS4 (White et al. 1990), PG2b/PG3a (Andrew et al. 2009), GDF1/GDR1 (Berbee et al. 1999) and H3-1a/H3-1b (Glass and Donaldson 1995), respectively. The amplicons were sequenced and deposited in GenBank [MT459807 (ITS), MT459808 (endoPG), MT459805 (GAPDA), MT459806 (H3)]. MegaBLAST analyses revealed that our ITS, endoPG, GAPDA, and H3 sequences were 99-100% identical to those of A. tenuissima isolates in GenBank [AF347032 (ITS), KP124026 (endoPG), AY278809 (GAPDA), KF997086 (H3)], confirming the identity of the pathogen as A. tenuissima. Pathogenicity tests were performed by inoculating the fungus onto healthy, mature leaves of A. triloba in the field. Twenty five leaves (five leaves/plant) were sprayed with spore suspensions (1 × 106 spores/ml) of each fungal pathogen, and the same number of leaves were sprayed with distilled water as controls. Inoculated and control leaves were covered with clear plastic bags for 3 days. The experiment was repeated three times. Twelve days after inoculation, the observed symptoms were similar to the original symptoms and the same fungal pathogen was reisolated from the inoculated leaves and identified as A. tenuissima based on morphological features and sequence analysis. The control leaves remained asymptomatic and no fungus was isolated from these leaves. Previously, a leaf spot of A. triloba caused by Alternaria brassicae was reported in Dalian, China (Xie et al. 2017). In order to control this disease effectively, further studies are needed on the biology and ecology of A. tenuissima and A. brassicae respectively. To our knowledge, this is the first report of A. tenuissima associated with leaf spot disease on A. triloba in China. In late September 2020, the diseased plant rate increased to 38% in Alaer city. If the disease control and prevention is neglected, the landscape of Alaer city will be affected seriously. So, in order to effectively control the spread of the disease, it is urgent now to study the sensitivity of pathogen to fungicide and carry out the field efficacy trials. References: Andrew, M., et al. 2009. Mycologia. 101:95. Berbee, M. L., et al. 1999. Mycologia. 91:964. Glass, N. L., and Donaldson, G. C. 1995. Appl. Environ. Microbiol. 61:1323. Simmons, E. G. 2007. Alternaria: An Identification Manual. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands. White, T. J., et al. 1990. PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Xie, Y., et al. 2017. Liaoning Agricultural Sciences. 6: 73.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1382-1382 ◽  
Author(s):  
J. H. Lee ◽  
D. S. Kim ◽  
H. J. Cho ◽  
G.-H. Gang ◽  
Y.-S. Kwak

Farfugium japonicum (L.) Kitam (common name: Leopard plant) is known as a medical herb and belongs to family Asteraceae (1). In June 2012, a leaf spot disease was observed on the leaf surface of F. japonicum at a forest research plot Jinju, Gyeongnam province, Korea. More than 95% of F. japonicum plants were infected and leaf spot symptom appeared in the regions under our investigation. Light brownish symptoms initially developed and the spot size gradually increased and turned dark brown with an irregular shape as the disease progressed (spot size 1 to 10 mm in diameter). At the late stage of disease, spots became hollow and completely dehydrated. The infected leaves were easily crumbled, possibly due to dryness. To isolate the causal agent, the infected leaves were surface disinfected and pieces of leaves were placed on water agar (WA). Nine isolates were isolated from 10 pieces of the infected leaves. Fungi mycelia from the WA were transferred on potato dextrose agar (PDA) and incubated at 28°C for 7 days. The colonies were purple navy to black and conidia spores developed on the media. The morphological characteristics of spores were multi-septate, dark brown, pyriform, and 6.7 to 12.8 × 22.2 to 38.4 μm. The spores had 1 to 4 transverse and 0 to 3 longitudinal septa. The morphological characteristics of the isolates showed considerably similar to well-known Alternaria tenuissima (2). The leaf spot disease caused by A. cinerariae of F. japonicum was reported from Japan (3). Spores of A. cinerariae are golden brown to brown with 3 to 9 transverse and 0 to 6 longitudinal septa and are 87.5 × 28.7 μm (avg.) (3). To verify pathogenicity of the isolate, the pure cultured fungi on the PDA medium was taken (4 mm in diameter) and placed on healthy leaves of Leopard plant. The artificially inoculated leaves were placed on wet filter paper in Petri dishes and incubated at 25°C and 80% humidity. At 7 days after inoculation, similar disease symptoms developed on 8 out of 10 infected Leopard plant leaves. The pathogen was reisolated from artificially infected leaves. To identify in molecular biology level, genomic DNA was extracted and the ITS-rDNA region was amplified using universal primers ITS1 and ITS4. The amplified PCR product was purified and sequenced (528 bp) with ITS1 and ITS4 primers for both directions and then deposited in GenBank (Accession No. KC415611.1). The BLAST search showed that it matched previously reported A. tenuissima with 100% identity. To the best of our knowledge, this is the first report of Leopard plant leaf spot disease in Korea. References: (1) E. Y. Kim et al. J. Ethnopharmacol. 146:40, 2013. (2) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992. (3) T. Sakoda et al. Res. Bull. Pl. Prot. Japan 46:73, 2010.


Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 157-157 ◽  
Author(s):  
I. Y. Choi ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Schisandra chinensis (Turcz.) Baill. is a deciduous woody vine native to northern China and the Russian Far East. Its berries have long been used in traditional Asian medicine. In Korea, S. chinensis is one of 10 major medicinal crops and, as of 2011, the production is 6,892 metric tons from 1,749 ha of cultivation area (1). During summer to autumn of 2011 and 2012, leaf spots were observed on S. chinensis (cv. Cheongsun) with disease incidence of 100% in many locations of Jangsu County, Korea. Early symptoms appeared as small, circular, and pale brown spots. Each spot increased in size, became grayish brown and necrotic, and finally developed concentric rings with a definite margin. Some spots coalesced to cover nearly half of the leaves, often becoming torn and giving a shot hole effect. The infected leaf tissue contained blackish pycnidia from which masses of conidia were released in a humid environment. The pycnidia were brown, globose to pyriform, ostiolate, and 45 to 160 μm in diameter. Conidia were hyaline, smooth, oval to ellipsoidal, aseptate or medianly 1-septate, very occasionally 2-septate, slightly constricted at the septa, 4 to 11 × 2.5 to 5 μm, and contained small oil drops. These morphological characteristics were consistent with the generic concept of Phoma (2). Three monoconidial isolates were successfully cultured by diluting conidia mass in sterile water and streaking conidia suspension on potato dextrose agar (PDA). A representative isolate was deposited in the Korean Agricultural Culture Collection (Accession No. KACC47113) and used for pathogenicity test and molecular analysis. Inoculum for a pathogenicity test was prepared by harvesting conidia from 30-day-old cultures (12-h diurnal cycle, 25°C) and a conidial suspension in water (1.1 × 107 conidia/ml) was sprayed onto leaves of three healthy seedlings (cv. Cheongsun). Three seedlings serving as controls were sprayed until runoff with sterile distilled water. The plants were separately covered with plastic bags for 48 h in a glasshouse. After 10 days, typical leaf spot symptoms developed on the leaves inoculated with the fungus. Phoma sp. was re-isolated from those lesions, confirming Koch's postulates. No symptoms were observed on controls. The pathogenicity test was conducted twice. Fungal DNA was extracted, and the complete internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced directly. The resulting 520-bp sequence was deposited in GenBank (Accession No. KC928322). The sequence showed over 99% similarity with many Phoma species from various substrates, but no exact matches. Phoma leaf spot of S. chinensis was once recorded in Korea without pathogenicity test and culture deposition (3). Phoma glomerata was recorded as a causal fungus of leaf spot disease on S. chinensis in China (4). The Korean isolates differ from P. glomerata in having larger conidia and are separated from it in ITS sequence data. Therefore, we tentatively place the Korean isolates as unidentified Phoma sp. To our knowledge, this is the first confirmed report of leaf spot disease caused by a Phoma sp. in Korea. References: (1) Anonymous. Statistics of Cultivation and Production of Industrial Crops in 2011. Korean Ministry for Food, Agriculture, Forestry and Fisheries. 2012. (2) M. M. Aveskamp et al. Mycologia 101:363, 2009. (3) E. J. Lee et al. Compendium of Medicinal Plant Diseases with Color Plates. Nat. Inst. Agric. Sci., Suwon, Korea. 1991. (4) X. Wang et al. Plant Dis. 96:289, 2012.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 493-493 ◽  
Author(s):  
J. Gao ◽  
Y. Zhi ◽  
Q. R. Bai

Eleutherococcus senticosus (Ruper et Maxim) Maxim, a very important potential medicinal plant used for the treatments of neurasthenia, anti-aging, and kidney deficiency, is a perennial herb belonging to Araliaceae and mainly distributed in northeast China. With the development of its cultivation, many diseases start to occur and a previously unknown leaf spot was observed on this plant in July 2007 in Linjiang City, Jilin Province, China. This disease incidence reached 100% in some planting grounds and it has resulted in serious loss of acanthopanax production. This disease generally happens during July and August in Jilin Province, China. At the initial stage of the infection, some small, light brown spots appeared on the leaves that gradually become round or irregular, dark brown, concentrically zonate with a dark brown margin, frequently surrounded by light yellow haloes and conspicuous black brown concentric rings in the advanced stage of the infection. The necrotic areas often coalesce and result in the appearance of larger spots with a diameter of 13.0 to 15.0 mm. Severely affected plants were defoliated. On leaf spots, conidia, generally in short chains, were straight, multicellular, obclavate or obpyriform, olivaceous brown or dark brown, with three to eight transverse and rarely zero to four longitudinal or zero to three oblique septa, and measured 8.3 to 27.5 × 17.3 to 55.0 μm. Conidiophores arose singly or in groups, straight or flexuous, cylindrical, expand in base cell, branch occasionally, septate, pale to olivaceous brown, 25.0 to 75.0 μm long, 3.0 to 6.0 μm wide; beak or false beak cylindrical, septate, colorless or light brown, and measured 2.0 to 5.1 × 10.4 to 47.7 μm. The morphological descriptions and measurements of the fungi are similar to Alternaria tenuissima (2). Six single cultures from the infected leaves were isolated on potato dextrose agar. Pathogenicity tests were carried out on the potted, healthy, 1-year-old plants (n = 10). These plants were divided into two groups, one group was sprayed with a conidial suspension of 105 conidia per ml and the other was sprayed with sterilized water as control plants. All plants were covered with polyethylene bags for 3 days. Symptoms of the disease appeared 5 days after inoculation. Symptoms on the inoculated leaves were similar to those that naturally occurred on the plants. The fungal pathogen was consistently reisolated from the inoculated plants but not from the control plants. The internal transcribed spacer (ITS) region of rDNA was amplified from DNA extracted from single-spore isolate cwz-2 of the pathogen using the ITS1/ITS4 and sequenced (GenBank Accession No. HQ402558). The ITS sequence had 99% identity with that of A. tenuissima strain XSD-83 (GenBank Accession No. EU326185). Therefore, the pathogen was identified as A. tenuissima on the basis of its morphological characteristics and ITS sequence. A. tenuissima was reported to occur on many plants such as blueberry in China (1). However, to our knowledge, this is the first report of A. tenuissima occurring on E. senticosus in China. References: (1) Y. S. Luan et al. Plant Dis. 91:464, 2007. (2) T. Y. Zhang et al. Fungi Notes–Genera Alternaria in China, 16:19, 38, 2003.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mingyan Ming Luo ◽  
Yulan Yu Jiang

Kidney bean (Phaseolus vulgaris L.) is a legume with high nutritional and economic value. This vegetable crop is widely cultivated in China, providing a year-round supply of young edible pods. In July 2020, a leaf spot disease on kidney bean cultivar ‘Dabailong’ was observed on a two-hectare field in Longli County (26°16′15.66″ N, 106°48′12″ E), Guizhou Province, China. Disease incidence was estimated to be nearly 50%. Foliar symptoms manifested as black circular spots, surrounded by a yellow halo and accompanied by white mycelium. To identify the pathogen, small portions of tissue (5×5 mm) from margins of leaf spots were cut from 20 symptomatic leaves, surface disinfected with 75% ethanol for 30 s, rinsed two times with sterile distilled water, dried on a sterile filter paper, and incubated on potato dextrose agar (PDA) at 28°C for 3 days. A total of 39 single-spore isolates were obtained. The colonies on PDA were fluffy, changing from white to gray or black with age, and reaching 7-cm diameter in 5 days at 28°C. Conidia were black, globose to subglobose, smooth, solitary, measuring 13.0 to 16.0 × 10.5 to 16.0 µm (n=30). Morphological characteristics were consistent with Nigrospora oryzae. In addition, the rDNA internal transcribed spacer (ITS), large subunit (LSU), β-tubulin (TUB) and translation elongation factor 1-alpha (TEF1) loci were amplified by PCR and sequenced (White et al. 1990, Glass and Donaldson 1995, O'Donnell et al. 1998; Carbone and Kohn 1999). The ITS, LSU, TUB and TEF1 sequences of two isolates, GUCC19-5105 and GUCC19-5192, were submitted to GenBank. BLASTn analysis of these sequences showed >98% homology with those of N. oryzae strain LC 7293 in GenBank (ITS, 99.80% (MZ145361 vs KX985931 – 498/499 bp) and 99.62% (MZ148445 vs KX985931 – 525/527 bp); LSU, 100% (MZ146317 vs KY806236 – 837/837 bp) and 99.76% (MZ148446 vs KY806236 – 847/849 bp); TUB, 98.72% (MZ329335 vs KY019601 – 386/391 bp) and 98.67% (MZ329337 vs KY019601 – 373/378 bp) and TEF1, 98.91% (MZ329336 vs KY019396 – 452/457 bp) and 98.89% (MZ329334 vs KY019396 – 444/449 bp) respectively). The phylogenetic tree of the combined 4 sequences showed that both isolates clustered with N. oryzae. Based on morphological characteristics and the multigene phylogenetic analysis, GUCC19-5105 and GUCC19-5192 isolates were identified as N. oryzae. Pathogenicity tests were performed twice by spraying conidial suspension (1×105 conidia/mL) of the two isolates (GUCC19-5105 and GUCC19-5192) on leaves of ten (five per isolate) healthy 5-week-old kidney bean cultivar ‘Dabailong’ plants. Two plants sprayed with sterile water served as controls. After inoculation, all the plants were kept moist in plastic bags for 24 hours and incubated in a greenhouse at 25°C for 20 days. Leaf spots similar to those observed in the field were observed 20 days post inoculation, but no lesions were observed on control plants. N. oryzae was reisolated from the infected tissues of inoculated kidney bean plants and the identity of the reisolated pathogen was confirmed as N. oryzae through morphology and sequencing ITS, LSU, TUB and TEF1 loci. In recent years, N. oryzae has been reported to infect a variety of plants such as Aloe vera, Citrullus lanatus and Costus speciosus (Begum et al. 2018; Chen et al. 2019; Sun et al. 2020). To our knowledge, this is the first report of leaf spot disease on kidney bean caused by N. oryzae in the world and provides a basis for diagnosticians and researchers to identify the disease and develop disease management strategies.


Plant Disease ◽  
2003 ◽  
Vol 87 (2) ◽  
pp. 203-203
Author(s):  
S. T. Koike ◽  
S. A. Tjosvold ◽  
J. Z. Groenewald ◽  
P. W. Crous

Bells-of-Ireland (Moluccella laevis) (Lamiaceae) is an annual plant that is field planted in coastal California (Santa Cruz County) for commercial cutflower production. In 2001, a new leaf spot disease was found in these commercially grown cutflowers. The disease was most serious in the winter-grown crops in 2001 and 2002, with a few plantings having as much as 100% disease incidence. All other plantings that were surveyed during this time had at least 50% disease. Initial symptoms consisted of gray-green leaf spots. Spots were generally oval in shape, often delimited by the major leaf veins, and later turned tan. Lesions were apparent on both adaxial and abaxial sides of the leaves. A cercosporoid fungus having fasciculate conidiophores, which formed primarily on the abaxial leaf surface, was consistently associated with the spots. Based on morphology and its host, this fungus was initially considered to be Cercospora molucellae Bremer & Petr., which was previously reported on leaves of M. laevis in Turkey (1). However, sequence data obtained from the internal transcribed spacer region (ITS1, ITS2) and the 5.8S gene (STE-U 5110, 5111; GenBank Accession Nos. AY156918 and AY156919) indicated there were no base pair differences between the bells-of-Ireland isolates from California, our own reference isolates of C. apii, as well as GenBank sequences deposited as C. apii. Based on these data, the fungus was subsequently identified as C. apii sensu lato. Pathogenicity was confirmed by spraying a conidial suspension (1.0 × 105 conidia/ml) on leaves of potted bells-of-Ireland plants, incubating the plants in a dew chamber for 24 h, and maintaining them in a greenhouse (23 to 25°C). After 2 weeks, all inoculated plants developed leaf spots that were identical to those observed in the field. C. apii was again associated with all leaf spots. Control plants, which were treated with water, did not develop any symptoms. The test was repeated and the results were similar. To our knowledge this is the first report of C. apii as a pathogen of bells-of-Ireland in California. Reference: (1) C. Chupp. A Monograph of the Fungus Genus Cercospora. Cornell University Press, Ithaca, New York, 1954.


Plant Disease ◽  
2003 ◽  
Vol 87 (12) ◽  
pp. 1536-1536 ◽  
Author(s):  
G. Polizzi ◽  
I. Castello ◽  
A. M. Picco ◽  
D. Rodino

St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze) is used for lawns in southern Italy because it is much more resistant to biotic and abiotic adversities than other turfgrass species. Because few seeds are viable, this species is established by vegetative propagation. A new disease was noticed during the spring of 2002 and 2003 on cuttings of St. Augustinegrass growing in three greenhouses in eastern Sicily. The disease affected leaves and culms and caused a progressive drying of the plants. The infection was first seen on leaves as gray, necrotic spots that enlarged in high-humidity conditions to form oval, and later, spindle-shaped lesions. In association with the lesions, it was possible to observe fungal spore development and sunken areas with blue-gray centers and slightly irregular, brown margins with yellow halos. Spots were concentrated without specific arrangement along longitudinal veins and the midrib and at the base, tip, and margins of the leaf blade. Symptoms on the culms consisted of brown-to-black blotches that sometimes extended throughout the internodes. From these infected tissues, 20 explants taken from leaves and culms were cut, washed with sterile water, and placed on 1.5% water agar (WA). Later, conidia and conidiophores were obtained from colonies with a sterile glass needle and placed on 4% WA. From these plates, two monoconidial isolates were obtained and transferred to rice meal medium (1). The colonies were identified as Pyricularia grisea Cooke (Sacc.), anamorphic state of Magnaporthe grisea (Hebert) Yeagashi & Udagawa, the cause of rice blast disease and gray leaf spot disease of turfgrasses. The conidia were pyriform to obclavate, narrowed toward the tip, rounded at the base, 2-septate, 21 to 31 μm × 6 to 10 μm (average 25.7 ×8.2 μm). Pathogenicity tests were performed by inoculating leaves and culms of six St. Augustinegrass plants with a conidial suspension of the fungus (1.5 ×105 conidia per ml). The same number of noninoculated plants was used as controls. All plants were incubated in a moist chamber with high humidity at 25°C. After 6 days, all inoculated plants showed typical symptoms of the disease. Koch's postulates were fulfilled by isolating P. grisea from inoculated plants. Gray leaf spot caused by P. grisea has been a chronic problem on St. Augustinegrass since it was first reported in 1957 (2). To our knowledge, this is the first report of P. grisea on St. Augustinegrass in Italy. While it does not appear to be an important disease in the field at this time in Sicily, it could cause losses in greenhouses where vegetative material is propagated for field planting. A preliminary molecular analysis has shown a clear distinction between the tested strain and other strains isolated from rice seeds and plants in northern Italy. References: (1) E. Roumen et al. Eur. J. Plant Pathol. 103:363, 1997. (2) L. P. Tredway et al. Plant Dis. 87:435, 2003.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 911-911 ◽  
Author(s):  
J. H. Park ◽  
S. E. Cho ◽  
K. S. Han ◽  
H. D. Shin

Rudbeckia hirta L. var. pulcherrima Farw. (synonym R. bicolor Nutt.), known as the black-eyed Susan, is a flowering plant belonging to the family Asteraceae. The plant is native to North America and was introduced to Korea for ornamental purposes in the 1950s. In July 2011, a previously unknown leaf spot was first observed on the plants in a public garden in Namyangju, Korea. Leaf spot symptoms developed from lower leaves as small, blackish brown lesions, which enlarged to 6 mm in diameter. In the later stages of disease development, each lesion was usually surrounded with a yellow halo, detracting from the beauty of the green leaves of the plant. A number of black pycnidia were present in diseased leaf tissue. Later, the disease was observed in several locations in Korea, including Pyeongchang, Hoengseong, and Yangpyeong. Voucher specimens were deposited at the Korea University Herbarium (KUS-F25894 and KUS-F26180). An isolate was obtained from KUS-F26180 and deposited at the Korean Agricultural Culture Collection (Accession No. KACC46694). Pycnidia were amphigenous, but mostly hypogenous, scattered, dark brown-to-rusty brown, globose, embedded in host tissue or partly erumpent, 50 to 80 μm in diameter, with ostioles 15 to 25 μm in diameter. Conidia were substraight to mildly curved, guttulate, hyaline, 25 to 50 × 1.5 to 2.5 μm, and one- to three-septate. Based on the morphological characteristics, the fungus was consistent with Septoria rudbeckiae Ellis & Halst. (1,3,4). Morphological identification of the fungus was confirmed by molecular data. Genomic DNA was extracted using the DNeasy Plant Mini DNA Extraction Kit (Qiagen Inc., Valencia, CA.). The internal transcribed spacer (ITS) region of rDNA was amplified using the ITS1/ITS4 primers and sequenced. The resulting sequence of 528 bp was deposited in GenBank (Accession No. JQ677043). A BLAST search showed that there was no matching sequence of S. rudbeckiae; therefore, this is the first ITS sequence of the species submitted to GenBank. The ITS sequence showed >99% similarity with those of many Septoria species, indicating their close phylogenetic relationship. Pathogenicity was tested by spraying leaves of three potted young plants with a conidial suspension (2 × 105 conidia/ml), which was harvested from a 4-week-old culture on potato dextrose agar. Control leaves were sprayed with sterile water. The plants were covered with plastic bags to maintain 100% relative humidity (RH) for the first 24 h. Plants were then maintained in a greenhouse (22 to 28°C and 70 to 80% RH). After 5 days, leaf spot symptoms identical to those observed in the field started to develop on the leaves inoculated with the fungus. No symptoms were observed on control plants. S. rudbeckiae was reisolated from the lesions of inoculated plants, confirming Koch's postulates. A leaf spot disease associated with S. rudbeckiae has been reported on several species of Rudbeckia in the United States, Romania, and Bulgaria (1–4). To our knowledge, this is the first report of leaf spot on R. hirta var. pulcherrima caused by S. rudbeckiae in Korea. References: (1) J. B. Ellis and B. D. Halsted. J. Mycol. 6:33, 1890. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ February 2, 2012. (3) E. Radulescu et al. Septoriozele din Romania. Ed. Acad. Rep. Soc. Romania, Bucuresti, Romania, 1973. (4) S. G. Vanev et al. Fungi Bulgaricae 3:1, 1997.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 289-289 ◽  
Author(s):  
X. Wang ◽  
J. Wang ◽  
J. Gao ◽  
L. Yang

Schisandra chinensis (Turcz.) Baill is a perennial liana belonging to the Schisandra genus of the family Magnoliaceae, which is cultivated in China as an important medicinal plant. In the summer of 2008, we observed a previously unknown foliar disease on the schisandras in Jingyu and Antu counties and the cities of Ji'an and Hunchun in Jilin Province. Symptoms appeared on the apex, margin, and center of leaves. The infection initially manifested as pale brown, small, necrotic spots on the leaves. Subsequently, these lesions became grayish brown in the center and dark brown with slight protuberances at the margins. Finally, these lesions developed concentric rings with a clear boundary separating them from the healthy tissue, were round to elliptical or irregular in shape, and had a diameter of 3 to 5 mm. In severely infected leaves, these spots eventually covered the entire leaf. Black spots (pycnidia) were produced on the infected leaf tissues in a humid environment. Fungus from infected leaf tissues was isolated on potato dextrose agar. The cultures were initially pale brown and turned dark green with age. Embedded pycnidia were generally formed after 5 days. The pycnidia were agglutinating, globose to subglobose, and measured 60.0 to 212.0 × 33.6 to 268.0 μm. Abundant conidia (4.06 to 7.2 × 1.65 to 3.53 μm) exhibiting zero to three oil droplets were produced by an 8-day-old colony; these conidia were ovoid or ellipsoidal, colorless, and aseptate; they were similar to conidia of Phoma glomerata. The internal transcribed spacer (ITS) sequence of rDNA of the isolated pathogenic strain (PG11; GenBank Accession No. GU724511) had 100% identity to P. glomerata (GenBank Accession No. HM769279). Therefore, the pathogen was identified as P. glomerata (Corda) Wollenw. & Hochapfel on the basis of morphology and ITS sequence data. To validate Koch's postulates, schisandra leaves were spray inoculated with a 2.5 × 105 conidia/ml suspension of the isolated pathogen. An equal number of healthy plants were inoculated with sterile water (control). After inoculation, 10 plants were covered with plastic bags for 3 days and maintained in a growth chamber at 25°C. After 8 days, all inoculated plants showed symptoms identical to those observed on the schisandra leaves infected in the field, whereas the controls did not show any symptoms. Reisolation of the fungi from lesions of inoculated leaves confirmed that the causal agent was P. glomerata. Diseases caused by P. glomerata have been reported on some plants (1,2). However, to our knowledge, this is the first report of leaf spot disease caused by P. glomerata on S. chinensis in China as well as in the world. References: (1) J. S. Chohan et al. Trans. Br. Mycol. Soc. 75:509, 1980. (2) T. Thomidis et al. Eur. J. Plant Pathol. 131:171,2011.


Sign in / Sign up

Export Citation Format

Share Document