scholarly journals First Report of Crown and Root Rot Caused by Binucleate Rhizoctonia AG-A on Dodonaea viscosa in Italy

Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1347-1347 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
A. Vitale ◽  
M. Kato ◽  
M. Hyakumachi

Florida hopbush (Dodonaea viscosa (L.) Jacq.) is an evergreen bush or small tree native to Australia and a member of the Sapindaceae. During September of 2008, a crown and root rot of D. viscosa was observed on 1-year-old potted plants in a commercial nursery in eastern Sicily, Italy. More than 15% of the plants showed disease symptoms. Infected plants were characterized by a lack of vigor. Roots and crowns were partially or completely destroyed, and as a consequence, infected plants were often wilted. Early in the disease development, roots and crowns showed brown lesions. Successively, mature crown lesions turned dark brown. Diseased tissues were surface disinfested for 1 min in 1% NaOCl, rinsed in sterile water, plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate, and then incubated at 25°C. A binucleate Rhizoctonia (BNR) species was consistently isolated from affected tissue of plants. Fungal colonies were white with floccose, aerial hyphae. Hyphal cells were determined to be binucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates with five different tester isolates of BNR AG-A on 2% water agar in petri plates (3). Anastomosis was observed with all tester isolates. The rDNA-ITS of one isolate of BNR (DISTEF-DV2) was sequenced (GenBank Accession No. AB514569) (2). The sequence from this isolate exhibited 99% homology with BNR AG-A (GenBank Accession No. AY738628). Pathogenicity tests were conducted on potted, healthy, 8-month-old plants of D. viscosa. Twenty plants were inoculated by placing 1/cm2 plugs of PDA from 5-day-old mycelial cultures near the base of the stem. The same number of plants was treated with 1/cm2 PDA plugs as controls. Plants were kept at 25°C and 95% relative humidity on a 12-h fluorescent light/dark regimen. Root and crown rots, identical to those observed in the nursery, appeared 30 days after inoculation, and all the inoculated plants died within 2 months. Control plants remained healthy. Binucleate Rhizoctonia was reisolated from symptomatic tissues, completing Koch's postulates. To our knowledge, this is the first report in the world of BNR AG-A causing disease on Florida hopbush. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) M. Hyakumachi et al. Phytopathology 95:784, 2005. (3) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.

Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 275-275 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
I. Castello ◽  
A. Vitale ◽  
M. Kato ◽  
...  

Thryptomene saxicola (Hook.) Schauer is an evergreen shrub native to Western Australia and a member of the Myrtaceae. In Italy, this species was recently introduced as an ornamental plant from abroad. From July of 2008 to September 2009, a new crown and root rot of T. saxicola was observed on several stocks of approximately 20,000 1- to 3-year-old potted plants. Diseased plants were obtained from a commercial nursery in eastern Sicily, Italy. They were propagated from cuttings and grown under drip irrigation. More than 30% of the plants showed disease symptoms. Infected plants were characterized by a lack of vigor. Roots and crowns were partially or completely destroyed, and as a consequence, infected plants were chlorotic and often wilted. Early in the disease development, roots and crowns showed brown lesions. Successively, mature crown lesions turned dark brown. Longitudinal sections of crown tissues revealed a discoloration of the basal stem. Diseased tissues were surface disinfested for 1 min in 1% NaOCl, rinsed in sterile water, plated on potato dextrose agar (PDA) amended with 100 mg/liter of streptomycin sulfate, and then incubated at 25°C. A binucleate Rhizoctonia (BNR) species was consistently isolated from affected tissues of plants. Phytophthora isolates were not recovered from symptomatic tissues plated on BNPRAH (benomyl, nystatin, pentachloronitrobenzene, rifampicin, ampicillin, and hymexazol) selective medium. Fungal colonies were white with floccose, aerial hyphae. Hyphal cells were determined to be binucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates with five different tester isolates of BNR AG-A on 2% water agar in petri plates (3). Anastomosis was observed with all tester isolates. The rDNA-ITS of one isolate of BNR (DISTEF-TS1) was sequenced (GenBank Accession No. AB514570) (2). The sequence from this isolate exhibited 99% homology with BNR AG-A (GenBank Accession No. AY738628). Pathogenicity tests were conducted on potted, healthy, 1-year-old plants of T. saxicola. Forty plants were inoculated by placing 1/cm2 plugs of PDA from 5-day-old mycelial cultures near the base of the stem. The same number of plants was treated with 1/cm2 PDA plugs as controls. Plants were kept at 25°C and 95% relative humidity on a 12-h fluorescent light/dark regimen. Root and crown rots, identical to those observed in the nursery, appeared 45 days after inoculation, and 80% of the inoculated plants died within 4 months. Control plants remained healthy. Binucleate Rhizoctonia was reisolated from symptomatic tissues, completing Koch's postulates. To our knowledge, this is the first report in the world of BNR causing disease on T. saxicola. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) M. Hyakumachi et al. Phytopathology 95:784, 2005. (3) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 433-433 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
A. Vitale ◽  
E. Lahoz ◽  
R. Nicoletti ◽  
...  

Laurustinus (Viburnum tinus L.), native to the Mediterranean Region, is an evergreen shrub belonging to the Caprifoliaceae that is commonly cultured as an ornamental shrub or small tree. During the summer and autumn of 2007 and 2008, a widespread yellowing, partial foliar necrosis, or death of the whole plant was observed on 3- to 4-year-old potted plants of V. tinus in a commercial nursery in eastern Sicily (Italy). More than 20% of the plants showed disease symptoms. Infected roots, crowns, and stems turned dark brown, leaves gradually became necrotic, and infected plants were often killed. Diseased tissues were disinfested for 1 min in 1% NaOCl, rinsed in sterile water, plated on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 mg/liter, and then incubated at 25°C. A binucleate Rhizoctonia (BNR) species was consistently isolated from affected tissue of Laurustinus. Fungal colonies were initially white, then turned light brown or brown with age, and formed irregularly shaped, light brown sclerotia after 10 days. Hyphal cells were determined to be binucleate when stained with 1% safranin O and 3% KOH solution (1) and examined with a microscope at ×400. Anastomosis groups were determined by pairing isolates on 2% water agar in petri plates (4). Pairings were made with tester strains of binucleate Rhizoctonia AG-A through AG-S, except AG-J and AG-M. Anastomosis was observed only with tester isolates of AG-G. The rDNA-ITS of two isolates of BNR (DISTEF-Vt 31 and DISTEF-Vt 32) was sequenced (GenBank Accession Nos. AB478783 and AB478784, respectively) (3). The sequence from these two isolates exhibited 100% homology with BNR AG-G (GenBank Accession No. AY927334). Pathogenicity tests were conducted on potted, healthy, 6-month-old laurustinus. Twenty plants were inoculated by placing 1-cm2 plugs of PDA from 5-day-old mycelial cultures near the base of the stem. The same number of plants was treated with 1-cm2 PDA plugs as control. Plants were kept at 25°C and 95% relative humidity with a 12-h fluorescent light/dark regimen. Stem, crown, and root rot symptoms, identical to ones observed in nursery, appeared 20 days after inoculation, and all the inoculated plants showed symptoms within 1 month. Control plants remained healthy. Binucleate Rhizoctonia was reisolated from symptomatic tissues, completing Koch's postulates. R. solani was previously reported on Viburnum sp. in the United States (2). To our knowledge, this is the first report of binucleate Rhizoctonia causing disease on V. tinus. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) D. F. Farr et al. Page 1252 in: Fungi on Plants and Plant Products in the United States. The American Phytopathological Society. St. Paul, MN, 1989. (3) M. Hyakumachi et al. Phytopathology 95:784, 2005. (4) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1194-1194 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
V. Guarnaccia ◽  
A. Panebianco ◽  
P. T. Formica

The genus Passiflora (Passifloraceae family) contains more than 500 species and several hybrids. In Italy, some of these species and hybrids are grown as ornamental evergreen vines or shrubs. During August and September 2010, a crown and root rot was observed in a stock of approximately 6,000 potted 2-year-old plants of Passiflora mollissima (Kunth) Bailey, commonly known as the banana passionflower, in a nursery located in eastern Sicily (southern Italy). Disease incidence was approximately 20%. Disease symptoms consisted of water-soaked lesions at the crown and a root rot. Successively, older crown lesions turned light brown to brown and expanded to girdle the stem. As crown and root rot progressed, basal leaves turned yellow and gradually became necrotic and infected plants wilted and died. A fungus with mycelial and morphological characteristics of Rhizoctonia solani Kühn was consistently isolated from crown lesions and brown decaying roots when plated on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 μg/ml. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Mycelium was branched at right angles with a septum near the branch with a slight constriction at the branch base. Hyphal cells removed from 10 representative cultures grown at 25°C on 2% water agar were determined to be multinucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates on 2% water agar in petri plates (4). Pairings were made with tester strains of AG-1, AG-2, AG-3, AG-4, AG-5, AG-6, and AG-11. Anastomosis was observed only with tester isolates of AG-4 (3). Pathogenicity tests were performed on container-grown, healthy, 3-month-old cuttings. Twenty plants of P. mollissima were inoculated near the base of the stem with five 1-cm2 PDA plugs from 5-day-old mycelial plugs obtained from two representative cultures. The same number of plants served as uninoculated controls. Plants were maintained at 25°C and 95% relative humidity with a 12-h fluorescent light/dark regimen. Wilt symptoms due to crown and root rot, identical to ones observed in the nursery, appeared 7 to 8 days after inoculation with either of the two isolates and all plants died within 20 days. No disease was observed on control plants. R. solani AG-4 was reisolated from symptomatic tissues and identified as previously described, confirming its pathogenicity. Damping-off or crown and root rot due to R. solani were previously detected on P. edulis in Brazil, Africa, India, Oceania, and Australia (2). To our knowledge, this is the first report of R. solani causing crown and root rot on P. mollissima. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) J. L. Bezerra and M. L. Oliveira. Fitopathol. Brasil. 9:273, 1984. (3) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reactions. Kluwer Academic Publishers, the Netherlands, 1996. (4) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 972-972 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
I. Castello ◽  
A. Vitale

Coprosma (J.R. Forster & G. Forster), a genus containing approximately 90 species, occurs principally in New Zealand, Hawaii, Australia, New Guinea, and islands of the Pacific. In Italy, some of these species, including many variegated varieties and hybrids, are grown as ornamental evergreen shrubs or small trees. In June 2008, a crown and root rot was observed in a stock of approximately 12,000 potted 3-year-old plants of Coprosma repens cv. Yvonne and C. lucida in a nursery in eastern Sicily. Disease incidence was approximately 30%. Disease symptoms consisted of water-soaked lesions at the crown of the trunk and a root rot. Successively, older stem lesions turned orange to brown. As a consequence, leaves initially became chlorotic, gradually became necrotic, and death of the plant followed. A fungus with mycelial and morphological characteristics of Rhizoctonia solani Kühn was consistently isolated from crown and root lesions when plated on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 μg/ml. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Mycelium was branched at right angles with a septum near the branch and a slight constriction at the branch base. Hyphal cells removed from cultures grown at 25°C on 2% water agar were determined to be multinucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates on 2% water agar in petri plates (3). Pairings were made with tester strains of AG-1 IA, AG-2-2-1, AG-2-2IIIB, AG-2-2IV, AG-3, AG-4, AG-5, AG-6, and AG-11. Anastomosis was observed only with tester isolates of AG-4, giving C2 and C3 reactions (2). Two representative isolates obtained from symptomatic tissues of C. lucida and C. repens cv. Yvonne were deposited at the Fungal Biodiversity Centre, Centraalbureau voor Schimmelcultures (DISTEF CL1 = CBS-124593 and DISTEF CR1 = CBS-124594, respectively). Pathogenicity tests were performed on container-grown, healthy, 3-month-old cuttings. Ten plants of C. lucida and ten plants of C. repens cv. Yvonne were inoculated near the base of the stem with five 1-cm2 PDA plugs from 5-day-old mycelial cultures. The same number of plants served as uninoculated controls. Plants were maintained at 25°C and 95% relative humidity on a 12-h fluorescent light/dark regimen. Symptoms identical to ones observed in the nursery appeared 5 days after inoculation and all plants died within 15 days. No disease was observed on control plants. A fungus identical in culture morphology to R. solani AG-4 was consistently reisolated from symptomatic tissues, confirming its pathogenicity. To our knowledge, this is the first report of R. solani causing crown and root rot on the genus Coprosma. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reactions. Kluwer Academic Publishers, the Netherlands, 1996. (3) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 204-204 ◽  
Author(s):  
D. Aiello ◽  
A. Vitale ◽  
E. Lahoz ◽  
R. Nicoletti ◽  
G. Polizzi

Murraya paniculata (L.) Jack, commonly called orange jessamine or orange jasmine (Rutaceae), is a small tropical tree that is native to Asia. This species, closely related to Citrus, is grown as an ornamental tree or hedge. During October of 2007, crown and root rot was observed on approximately 12,000 pot-grown, 4-month-old plants in a nursery in eastern Sicily, Italy. Basal leaves turned yellow and gradually became necrotic, and infected plants often died. Disease symptoms were observed on 1,800 (15%) plants. Isolations from affected tissues on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 mg/liter recovered a fungus with mycelial and morphological characteristics consistent with Rhizoctonia solani Kühn. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Microscopic examination revealed that hyphae had a right-angle branching pattern, were constricted at the base of the branch near the union with main hyphae, and were septate near the constriction. The nuclear condition of hyphal cells was determined on cultures grown at 25°C on 2% water agar (WA) when stained with 3% safranin O solution and examined at ×400. Anastomosis groups were determined by pairing isolates on 2% WA in petri plates (4). Pairings were made with tester strains AG-1 IA, AG-2-2-1, AG-2-2IIIB, AG-2-2IV, AG-3, AG-4, AG-5, AG-6, and AG-11. Anastomosis was observed only with tester isolates of AG-4 producing both C2 and C3 reactions. The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. These results were consistent with other reports on anastomosis reactions (1). The identification of group AG-4 within R. solani has been confirmed by electrophoretic patterns of pectic enzymes (polygalacturonases) in vertical pectin-acrylamide gel stained with ruthenium red (2). Pathogenicity tests were conducted on potted, healthy, 6-month-old seedlings of orange jessamine. Twenty-five plants were inoculated by placing 1-cm2 PDA plugs from 5-day-old mycelial cultures near the base of the stem. The same number of plants inoculated with PDA plugs served as controls. Plants were maintained at 25°C and 95% relative humidity on a 12-h fluorescent light/dark regimen. Wilt symptoms, identical to ones observed in the nursery, developed 3 months after inoculation because of crown and root rot. Control plants remained disease free. The pathogen was reisolated from symptomatic tissues, completing Koch's postulates. Collar rot due to R. solani was previously detected on M. koenigii (3). To our knowledge, this is the first report of R. solani causing disease on M. paniculata. References: (1) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reactions. Kluwer Academic Publishers, the Netherlands, 1996. (2) R. H. Cruickshank and G. C. Wade. Anal. Biochem. 107:177, 1980. (3) A. C. Jain and K. A. Mahmud. Rev. Appl. Mycol. 32:460, 1953. (4) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2004 ◽  
Vol 88 (1) ◽  
pp. 86-86
Author(s):  
E. R. Wright ◽  
M. C. Rivera ◽  
K. Asciutto ◽  
L. Gasoni ◽  
V. Barrera ◽  
...  

Common garden petunias (Petunia × hybrida Hort. Vilm.-Andr.) are herbaceous annual plants with brightly colored flowers up to 10 cm in diameter. During the winter of 2002, crown and root rot were observed on plants (cv. Ultra) growing in five greenhouses in Buenos Aires. Affected plants were randomly distributed in the greenhouses, and mean disease incidence in all the greenhouses was 26%. Basal leaves turned yellow and gradually became necrotic, and infected plants were often killed. Small pieces of affected tissues were disinfested in 2% sodium hypochlorite for 1 min and plated on 2% potato dextrose agar (PDA). Fifteen isolates identified to the genus Rhizoctonia were obtained. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Hyphal branched at right angles, were constricted at the base of the branch near the union with main hyphae, and septate near the constriction. Basidia were not observed in the greenhouses or on the plates. Isolates were cultivated on water agar and incubated at 25°C for 3 days. Hyphal cells were determined to be multinucleate when stained with 1% aniline blue solution (2) and examined at ×400. Anastomosis group of one isolate was determined by using AG-4 HG II, AG-1 IA, AG-1 IB, AG-1 IC, AG-2 2-1, and AG-2 2IIIB tester strains of Rhizoctonia solani that includes isolates reported to be pathogenic on ornamentals (1). Anastomosis was observed only with strains of AG-4 HG II. Pathogenicity on this isolate was conducted on potted, healthy, adult plants that were 10 to 22 cm high and flowering. Thirty-five plants were inoculated by placing 1 cm2 pieces of PDA from 7-day-old mycelial cultures near the base of the stem. Twelve control plants were treated with 1 cm2 PDA plugs. Plants were kept at 22 to 24°C, >95% relative humidity, and 12 h of fluorescent light. Wilt symptoms due to basal stem rot appeared 7 days after inoculation, and all the inoculated plants died within 27 days. Control plants remained disease free. The pathogen was reisolated from symptomatic tissues, completing Koch's postulates. To our knowledge, this is the first report of R. solani causing disease on petunia in Argentina. References: (1) D. M. Benson and D. K. Cartwright. Ornamental diseases incited by Rhizoctonia spp. Pages 303–314 in: Rhizoctonia species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, London, England, 1996. (2) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 1038 ◽  
Author(s):  
J. Beckerman ◽  
H. Nisonson ◽  
N. Albright ◽  
T. Creswell

Plant Disease ◽  
2021 ◽  
Author(s):  
Yaxing Li ◽  
Yangfan Feng ◽  
Cuiping Wu ◽  
Junxin Xue ◽  
Binbin Jiao ◽  
...  

During a survey of pathogenic oomycetes in Nanjing, China from June 2019 to October 2020, at least ten adjacent Rhododendron pulchrum plants at a Jiangjun Mountain scenic spot showed symptoms of blight, and crown and root discoloration . Symptomatic root tissues collected from three 6-year-old plants were rinsed with water, cut into 10-mm pieces, surface sterilized with 70% ethanol for 1 min, and plated onto 10% clarified V8 PARP agar (cV8A-PARP) containing pimaricin (20 mg/liter), ampicillin (125 mg/liter), rifampicin (10 mg/liter), and pentachloronitrobenzene (20 mg/liter). Four Pythium-like isolates were recovered after three days of incubation at 26°C, and purified using hyphal-tipping. Ten agar plugs (2×2 mm2) of each isolate were grown in 10 mL of 10% clarified V8 juice (cV8) in a 10 cm plate at 26°C for 3 days to produce mycelial mats, and then the cV8 was replaced with sterile water. To stimulate sporangial production, three to five drops of soil extract solution were added to each plate. Sporangia were terminal, ovoid to globose, and the size is 24 to 45.6 (mean 34.7) (n=10.8) in length x 23.6 to 36.0 (mean 29.8) (n=6.2) in width. Gametangia were not observed in cV8A or liquid media after 30 days. For colony morphology, the isolates were sub-cultured onto three solid microbial media (cV8A-PARP, potato dextrose agar, corn meal agar) . All isolates had identical morphological features in the three media. Complete ITS and partial LSU and cox2 gene regions were amplified using primer pairs ITS1/ITS4, NL1/NL4, and FM58/FM66 , respectively. The ITS, LSU, and cox2 sequences of isolate PC-dj1 (GenBank Acc. No. MW205746, MW208002, MW208003) were 100.00% (936/936 nt), 100.00% (772/772 nt), and 99.64% (554/556 nt) identical to those of JX985743, MT042003, and GU133521, respectively. We built a maximum-likelihood tree of Phytopythium species using the concatenated dataset (ITS, LSU, cox2) to observe interspecific differences. Based on the morphological characters and sequences, isolate PC-djl was identified as Phytopythium litorale . As the four isolates (PC-dj1, PC-dj2, PC-dj3 and PC-dj4) tested had identical morphological characters and molecular marker sequences, the pathogenicity of the representative isolate, PC-dj1, was tested using two inoculation methods on ten one-year-old R. pulchrum plants. For the first inoculation method, plants were removed from the pot, and their roots were rinsed with tap water to remove the soil. Each of these plants was placed in a glass flask containing 250 mL of sterile water and 10 blocks (10 x 10 mm2) of mycelial mats harvested from a three-day-old culture of P. litorale, while the other plant was placed in sterile water as a control, and incubated at 26°C. After three days, symptoms including crown rot, root rot and blight was observed on the inoculated plants whereas the control remained asymptomatic. For the second inoculation method, ten plants were dug up to expose the root ball. Ten three-day-old cV8A plugs (5×5 mm2) from a PC-dj1 culture or sterile cV8A plugs were evenly insert into the root ball of a plant before it was planted back into the original pots. Both plants were maintained in a growth chamber set at 26°C with a 12/12 h light/dark cycle and irrigated as needed. After 14 to 21 days, the inoculated plant had symptoms resembling those in the field , while the control plant remained asymptomatic. Each inoculation method was repeated at triplicate and the outcomes were identical. Phytopythium isolates with morphological features and sequences identical to those of PC-dj1 were recovered from rotted crown and root tissues of all inoculated plants. Previously, P. litorale was found causing diseases of apple and Platanus orientalis in Turkey, fruit rot and seedling damping-off of yellow squash in southern Georgia, USA. This is the first report of this species causing crown and root rot on R. pulchrum, an important ornamental plant species in China. Additional surveys are ongoing to determine the distribution of P. litorale in the city of Nanjing.


2020 ◽  
Vol 102 (4) ◽  
pp. 1353-1353
Author(s):  
Dalia Aiello ◽  
Alberto Fiorenza ◽  
Giorgio Gusella ◽  
Giancarlo Polizzi

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 588-588 ◽  
Author(s):  
F. Y. Chen ◽  
L. M. Lu ◽  
H. Z. Ni ◽  
Y. Wang ◽  
Y. G. Wang ◽  
...  

Chinese bayberry (Myrica rubra Siebold & Zucc.), an evergreen fruit tree, is widely grown in southern China. In 1999, severe twig dieback was observed on M. rubra in Taizhou and it spread to several major M. Rubra-producing areas of Zhejiang covering more than 6,000 ha by 2011. Symptoms were usually observed from June to November and first appeared as chlorosis of leaves and leaf drop, followed by the formation of dark brown lesions covered with white mycelia surrounding leaf scars. The lesions can extend to the whole twig and tree causing discoloration of the xylem. In most cases, infected trees die within 1 to 4 years. Two distinct fungi totaling 46 isolates were isolated from the surface-disinfested diseased twigs and cultured on potato dextrose agar (PDA) at 28°C. An isolate of each fungus, designated as C1 and B1, was characterized further following 10 days of growth on PDA at 28°C. C1 formed zonate, white colonies and black, acervular conidiomata with the conidia aggregated on acervuli as a creamy mass. Isolate B1 formed nonzonate, white colonies and black, acervular conidiomata with the conidia aggregated on acervuli as droplets. Conidia for each isolate were fusiform with five cells; one hyaline apical cell, one hyaline basal cell, and three, dark brown median cells. Conidia ranged from 17.8 to 25.2 × 6.7 to 9.2 μm for C1 and 21.2 to 27.8 × 4.3 to 7.5 μm for B1. There were two to three hyaline, filamentous appendages (9.8 to 23.5 μm long for C1 and 10.5 to 25.5 μm long for B1) attached to each apical cell, and one hyaline appendage (3.5 to 7.2 μm long for C1 and 3.0 to 6.8 μm long for B1) attached to each basal cell. The cultural and morphological characteristics of C1 (16 isolates) matched the description for Pestalotiopsis mangiferae while B1 (27 isolates) matched the description for P. vismiae (2). The PCR-amplified and sequenced internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1-5.8S-ITS2) for isolate C1 (GenBank Accession No. JQ281542) and B1 (GenBank Accession No. JQ281543) were 99 and 100% homologous to that of the P. mangiferae isolate MM 102 (GenBank Accession No. GU722595) and P. vismiae isolate xsd08116 (GenBank Accession No. FJ481027), respectively. For pathogenicity tests, nine healthy detached leaves and 12 potted plants of M. rubra were wound inoculated with sterile water (control) or conidial suspensions (105 conidia per ml; 20 μl on each site) of C1 and B1, respectively, and maintained with relative humidity of more than 90% under fluorescent light at 28°C. Tests were performed twice. Necrotic lesions, resembling those that occurred in the field, were observed on all inoculated detached leaves and 33.3% of C1 and 25% of B1 inoculated potted plants 10 and 30 days following inoculation, respectively, while the controls remained healthy. Two fungi were reisolated from the lesions with identical morphology to the initial C1 and B1 inoculums. Therefore, P. mangiferae and P. vismiae were determined to be the causal agent for twig dieback of M. rubra in China. Pestalotiopsis spp. were previously reported as pathogens of loquat (4), mango (3), and blueberry (1) causing economic loss. To our knowledge, this is the first report of twig dieback disease of M. rubra caused by P. mangiferae and P. vismiae. References: (1) J. G. Espinoza et al. Plant Dis. 92:1407, 2008. (2) Q. X. Ge et al. Flora Fungorum Sinicorum. Vol. 38, Pestalotiopsis. Science Press, Beijing, 2009. (3). Y. Ko et al. Plant Dis. 91:1684, 2007. (4). A. E. Perelló and S. Larran. Plant Dis. 83:695, 1999.


Sign in / Sign up

Export Citation Format

Share Document