scholarly journals Identification and Geographic Distribution of Serotypes of Potato Virus Y

Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 481-484 ◽  
Author(s):  
P. Ellis ◽  
R. Stace-Smith ◽  
G. de Villiers

From a panel of 10 monoclonal antibodies (MAbs) prepared against specific isolates representing the three recognized strain groups of potato virus Y (PVY), i.e., common (PVYO), tobacco veinal necrosis (PVYN), and stipple streak (PVYC), seven were selected for serotype analysis. These MAbs were tested for reactivity with 52 PVY strains representing all three strain groups from an international collection. Within the PVYN strain group, five serotypes were identified and designated N1 to N5. The PVYO strain group was more diverse, and nine serotypes were defined and designated O1 to O9. Only one serotype, designated C1, was defined) within the PVYC strain group. The same panel of MAbs was used to test 632 PVY samples collected from potato seed certification plots in North America. Although no PVY(N) serotypes were found, all of the PVYO serotypes were identified, and several samples, tentatively assigned to the C1 serotype, were found.

Plant Disease ◽  
2002 ◽  
Vol 86 (10) ◽  
pp. 1177-1177 ◽  
Author(s):  
J. M. Crosslin ◽  
P. B. Hamm ◽  
K. C. Eastwell ◽  
R. E. Thornton ◽  
C. R. Brown ◽  
...  

More than 50 isolates of Potato virus Y (PVY) with characteristics of strains that cause tobacco veinal necrosis (PVYN) were obtained from potatoes (Solanum tuberosum L.) grown in the northwestern United States. These isolates are being characterized at the biological and molecular levels. Isolate RR1 was obtained from leaves of potato cv. Ranger Russet showing distinct mottling and leaf deformity, which is in contrast to the leaf-drop and necrosis usually observed with ordinary strains of PVY (PVYO) in this variety. Isolate AL1 was obtained from tubers of potato cv. Alturas showing distinct internal light brown rings and blotches. When RR1 and AL1 were transmitted to tobacco (Nicotiana tabacum L. cvs. Samsun NN and 423), they caused systemic veinal necrosis, including stem and petiole lesions typical of PVYN strains (2). Symptoms induced by RR1 and AL1 on tobacco appeared 9 to 11 days after inoculation, whereas some other isolates caused delayed veinal necrosis. All isolates that produced veinal necrosis on tobacco were detectable with PVY polyclonal antisera. Potato virus X was not detected by enzyme-linked immunosorbent assay in tobacco plants showing veinal necrosis. Some isolates, including AL1, failed to react in serological tests using PVYN-specific monoclonal antibodies obtained from three commercial sources. Other isolates, including RR1, were detectable with these monoclonal antibodies. Reverse transcription-polymerase chain reaction (RT-PCR) products obtained with primers specific for the coat protein (CP) open reading frame (ORF) were cloned and sequenced. AL1 possesses a CP more closely related to PVYO type isolates, which would account for its failure to react with PVYN monoclonal antibodies. In this regard, AL1 is similar to the PVYN-Wilga isolate (1). Other isolates that are detectable with the PVYN monoclonal antibodies possess a CP more consistent with N strains of the virus. Results of RT-PCR tests using primers derived from the P1 ORF sequence (3), and the restriction enzyme analysis and sequencing of the RT-PCR products, all suggest that AL1 and RR1 are related to European-type members of PVY tuber necrotic (NTN) or N strains. However, other isolates under investigation appear to be more closely related to previously reported North American NTN types (3). The symptomatology of these viruses on tobacco and potato, and the serological and molecular data clearly show that at least two distinct variants of PVYN have been found for the first time in a major potato production area of the United States, and pose a potential threat to the potato industry. References: (1) B. Blanco-Urgoiti et al. Eur. J. Plant Pathol. 104:811, 1998. (2) J. A. de Bokx and H. Huttinga. Potato virus Y. Descriptions of Plant Viruses. No. 242, CMI/AAB, Surrey, England, 1981. (3) R. P. Singh et al. Can J. Plant Pathol. 20:227, 1998.


1994 ◽  
Vol 141 (2) ◽  
pp. 186-194
Author(s):  
G. Boudazin ◽  
C. Vergnet ◽  
B. Gélie ◽  
M. Meyer ◽  
J. Grosclaude ◽  
...  

2004 ◽  
Vol 150 (4) ◽  
pp. 709-720 ◽  
Author(s):  
A. Fanigliulo ◽  
S. Comes ◽  
R. Pacella ◽  
B. Harrach ◽  
D. P. Martin ◽  
...  

Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1102-1105 ◽  
Author(s):  
J. M. Crosslin ◽  
P. B. Hamm ◽  
D. C. Hane ◽  
J. Jaeger ◽  
C. R. Brown ◽  
...  

Totals of 960 and 286 certified potato seed lots from locations across North America were planted in trials in Washington and Oregon, respectively, in 2001 to 2003 and tested for strains of Potato virus Y (PVY). The incidence of PVYO-infected lots averaged 16.4 and 25.9% in the Washington and Oregon trials, respectively. There was a general trend of increasing incidence of the PVYO, PVYN:O, and PVYN strains during this period, as evidenced by more infected cultivars, sites of seed origin, and number of seed growers providing infected seed lots. In particular, there was a dramatic increase in seed lots with the PVYN:O strain from 2002 to 2003. PVYN:O, in contrast to PVYO, which only causes yield reduction, also causes internal and external damage to tubers, making them unmarketable. In 2003, PVYN:O occurred in seed lots originating in eight states and three Canadian provinces. The increased incidence of PVYN:O was likely due to the difficulty in differentiating this strain from PVYO. The prevalence of PVY in potato seed lots documented herein poses a threat to potato production in the United States and suggests that current measures to reduce the incidence of this virus are inadequate.


2018 ◽  
Vol 54 (No. 1) ◽  
pp. 30-33 ◽  
Author(s):  
M. Naderpour ◽  
L. Sadeghi

Molecular markers within or close to genes of interest play essential roles in marker-assisted selection. PCR-based markers have been developed for numerous traits in different plant species including several genes conferring resistance to viruses in potato. In the present work, rapid and reliable approaches were developed for the simultaneous detection of Ryadg and Ry-fsto, Ns, and PLRV.1 genes conferring resistance to Potato virus Y, Potato virus S and Potato leafroll virus, respectively, on the basis of previously published and newly modified markers. The sequence characterized amplified region (SCAR) markers for Ryadg, Ns and PLRV1 and the newly modified cleaved amplified polymorphic sequences (CAPS) marker for Ry-fsto were amplified in one PCR reaction which could simply characterize Ryadg and PLRV.1 resistance. Additional digestion of amplicons with EcoRV and MfeI for genotyping the Ry-fsto and Ns resistance genes, respectively, was needed. The effectiveness of genotyping in triplex and tetraplex PCRs was tested on 35 potato varieties used for potato seed production and breeding programs.  


Sign in / Sign up

Export Citation Format

Share Document