scholarly journals First Report of Botryosphaeria dothidea and B. obtusa on Apple in Bolivia

Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 328-328 ◽  
Author(s):  
W. J. Kaiser ◽  
G. M. Rivero V. ◽  
E. Valverde B. ◽  
L. Yerkes

Gala and Winter Banana apples are important commercial crops in Azurduy and Lima Bamba, which are located in the Department (state) of Chuquisaca, Bolivia. White or bot rot (causal agent Botryosphaeria dothidea (Moug.:Fr.) Ces. De. Not. [anamorph Fusicoccum aesculi Corda]) and black rot (causal agent B. obtusa (Schwein.) Shoemaker [anamorph Sphaeropsis malorum Berk.]) have not been reported previously from Bolivia. Both fungi were isolated from apple fruit and branch cankers in Azurduy, but only B. dothidea was isolated from rotted fruit and limb cankers in Lima Bamba. Both fungi also were isolated from rotted Gala and Winter Banana fruit purchased in the markets in Sucre, Bolivia. Symptoms on fruit consisted of light-to-dark brown lesions that ranged from 3- to 8-cm in diameter. Cankers on limbs were sunken and reddish brown and ranged from 2 to 25+ cm in length and 0.5 to 3 cm in diameter. Neither pathogen produced pycnidia in lesions on rotted fruit, but they often developed in branch cankers. Pseudothecia of B. dothidea and B. obtusa were not observed. Identification of both pathogens was based on descriptions of their anamorphic stages (1). To fulfill Koch's postulates, four healthy Gala apple fruit were inoculated with two isolates of each pathogen by wounding the opposite faces of surface-disinfected fruit with a 5-mm-diameter cork borer and inserting mycelial plugs of the pathogens. Plugs were obtained from the margins of cultures growing on potato dextrose agar (PDA). Wounds were made on the opposite sides of each fruit, a mycelial plug of one of the pathogens was inserted in one wound, and on the opposite side, a plug of sterile PDA was inserted as a control. Each plug containing fungal mycelium or sterile PDA was covered with a plug of trimmed apple tissue, and the apple fruit were incubated in a moist chamber at 17 to 20°C for 10 days. Six branches on two young apple trees growing outdoors in a nursery were inoculated in a similar manner with one isolate of each pathogen: bark was wounded with a 5-mm-diameter cork borer, and the wounded area was inoculated with a plug of PDA containing the pathogen or a plug of sterile PDA for the control. The inoculated sites were wrapped with masking tape to prevent dehydration. Within 10 days, all fruit wounds inoculated with isolates of each pathogen developed brown lesions up to 5 cm in diameter. Each pathogen was reisolated from tissues in which it had been inoculated, but not from any of the noninoculated control sites. Within 6 to 8 weeks, all but one wound on branches inoculated with each pathogen developed depressed canker lesions up to 2 cm in length. Each pathogen was reisolated from the canker produced by inoculation with that pathogen, but not from any of the control sites. Reference: (1) T. B. Sutton. White rot and black rot. Pages 16–20 in: Compendium of Apple and Pear Diseases, A. L. Jones and H. S. Aldwinckle, eds. The American Phytopathological Society, St. Paul, MN, 1991.

2001 ◽  
Vol 91 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Ki Woo Kim ◽  
Eun Woo Park ◽  
Young Ho Kim ◽  
Kyung-Ku Ahn ◽  
Pan Gi Kim ◽  
...  

Apple fruit tissues infected with Botryosphaeria dothidea were examined by transmission electron microscopy using susceptible cv. Fuji and resistant cv. Jonathan. Immature (green) and mature (red) fruits of cv. Fuji with restricted or expanding lesions were also examined to reveal subcellular characteristics related with latent and restricted disease development. In infected susceptible mature fruits, cytoplasmic degeneration and organelle disruption commonly occurred, accompanying cell wall dissolution around invading hyphae. Cell wall dissolution around invading hyphae in subepidermis was rare in immature, red halo-symptomed cv. Fuji and resistant cv. Jonathan fruits. In infected immature fruits of cv. Fuji, presumably at the latent state of disease development, cellular degeneration was less severe, and invading hyphae contained prominent microbody-lipid globule complexes or the deposition of thin electron-dense outer layer around cell wall of intercellular hyphae. Both mature fruits with red halos and resistant apple fruits formed cell wall protuberances at the outside of cell walls. In addition, electron-dense extramural layers were formed in the resistant apple fruits. Aberrant hyphal structures such as intrahyphal hyphae were found only in resistant fruit tissues, indicating the physiologically altered fungal growth. These ultrastructural changes of host tissues and fungal hyphae may reflect the pathogenesis of apple white rot under varying conditions of apple fruits.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 486-496 ◽  
Author(s):  
W. Tang ◽  
Z. Ding ◽  
Z. Q. Zhou ◽  
Y. Z. Wang ◽  
L. Y. Guo

Apple ring rot and Botryosphaeria canker are severe diseases affecting apple production in China, but there is confusion regarding which pathogens cause these diseases and their similarity to other diseases, such as white rot of apple, and ring rot and Botryosphaeria canker of pear. In this study, the pathogen of apple ring rot in China was compared with the pathogen of apple ring rot in Japan and Korea, the pathogen of Botryosphaeria canker of apple and pear in China, the pathogen of pear ring rot in China, and the pathogen of white rot of apple in the United States. Comparisons were based on morphology, pathogenicity on branches and fruit, and sequences of rDNA in the internal transcribed spacer region and of the β-tubulin and actin genes. Results showed that the causal agent of apple ring rot and Botryosphaeria canker of apple in China was Botryosphaeria dothidea, which has also been reported to be the pathogen of apple ring rot in Korea and Japan. Pathogenicity tests showed that B. dothidea infection on apple and pear branches may induce wart or canker symptoms depending on the conditions. These results are consistent with the hypothesis that the same pathogen causes the wart symptom of apple ring rot and the Botryosphaeria canker symptom on apple branches in China. The results also suggest that apple ring rot and white rot are the same disease and are caused by B. dothidea. Finally, B. dothidea isolates from pear and other fruit or forest trees may serve as inoculum for apple ring rot.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 999-999 ◽  
Author(s):  
W. M. Jurick ◽  
I. Vico ◽  
V. L. Gaskins ◽  
W. J. Janisiewicz ◽  
K. A. Peter

Botryosphaeria dothidea (Moug.:Fr.) Ces. De Not. causes perennial cankers on apple trees and causes white rot on apple fruit in the field and during storage (1). Prolonged periods of warm wet weather favor rapid disease outbreaks that result in severe losses, which range from 25 to 50% for the southeastern United States (3). A B. dothidea isolate was obtained from decayed ‘Fuji’ apple fruit exhibiting white rot symptoms from a local farm market in Beltsville, MD, in May 2010. The fruit had characteristic large dark brown lesions with irregular margins and decay expanded unevenly toward the core and the tissue was soft. The pathogen was isolated from symptomatic tissue by spraying the lesion surface with 70% ethanol. The skin with aseptically removed with a scalpel and small pieces of tissue were placed on potato dextrose agar (PDA) and incubated at 20°C. Once fungal growth was evident, the cultures were hyphal-tip transferred to individual PDA plates and incubated at 20°C. The B. dothidea isolate produced black aerial mycelium with a white margin on PDA and had a black reverse. Conidiomata were evident after 10 to 14 days at 20°C only on oatmeal agar. Conidia were hyaline, smooth and straight, fusiform with an subobtuse apex and a truncate base 20 to 26 (24.33) × 4 to 7 (5) μm (n = 50). Genomic DNA was isolated from the fungus and amplified with gene specific primers (ITS 4 and 5) for the ribosomal DNA internal transcribed spacer region ITSI-5.8S-ITS2 as described by White et al. (4). Both forward and reverse strands of the 542-bp amplicon were sequenced and assembled into a contig. The nucleotide sequence (GenBank Accession No. KC473852) indicated 99% identity to B. dothidea isolate CMM3938 (JX513645.1) and to voucher specimens CMW 25686, 25696, and 25222 (FM955381.1, FM955379.1, and FM955377,1). Koch's postulates were conducted using three ‘Golden Delicious’ apple fruit that were wound-inoculated with 50 μl of a mycelial suspension of the fungus, obtained from aseptically scraping a 7-day-old PDA culture, and was also repeated using ‘Fuji’ apple fruit. Large, brown, slightly sunken, soft lesions with undefined edges developed 5 days after inoculation at 20°C and water-only inoculated fruit were symptomless. The fungus was reisolated from infected tissue and was morphologically identical to the original isolate from decayed apple fruit. To determine if the B. dothidea isolate was resistant to postharvest fungicides, the minimum inhibitory concentration (MIC) was conducted using the 96 well plate method with a mycelial suspension of the fungus as described by Pianzzola et al. (2). The MIC for the isolate was >1 ppm for Mertect and Scholar and 50 ppm for Penbotec, which are well below the labeled rates for these postharvest fungicides and the experiment was repeated. To our knowledge, this is the first report of B. dothidea causing white rot on apple fruit in Maryland. References: (1) A. R. Biggs and S. S. Miller. HortScience 38:400, 2003. (2) M. J. Pianzzola et al. Plant Dis. 88:23, 2004. (3) T. B. Sutton. White rot and black rot. Pages 16-20 in: Compendium of Apple and Pear Diseases, A. L. Jones and H. S. Aldwinckle, eds. The American Phytopathological Society, St Paul, MN, 1991. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Application. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chang-Gi Back ◽  
Walftor Dumin ◽  
You-Kyoung Han ◽  
Yeong-Seok Bae ◽  
Jong-Han Park

Botryosphaeria dothidea (B. dothidea) is a fungal pathogen commonly associated with stem canker, dieback, and rot disease in a variety of woody plants worldwide (Dong and Guo, 2020). In Korea, B. dothidea was reported to cause a disease problem to serval crops such as apple and blueberry (Kim, 1995; Choi, 2011). In early 2020, a typical symptom resembling the stem rot disease was spotted to occur at a plumcot cultivation area around Wanju (35.827870, 127.030380) province, Korea. At the early stage of infection, a small blister appeared on the plumcot branch and stem. However, as the blister extended, a light brown canker was observed appeared on the infected area and in some cases a sticky sap oozed from the branch bark crack. If not managed or treated properly, all leaves beyond the infection site will turn brown, wilt, and the whole plumcot tree eventually dies. A survey in the affected area showed that approximately 5% of the plumcot trees were infected which cause up to 10% reduction in total production. To identify the causal agent, symptomatic tissues were excised and surface sterilized with 70% ethanol for 30 sec followed by 1% NaClO for 30 sec before rinsing with sterile water, thrice. The samples were then dried with a piece of filter paper and later air-dried before being placed on a potato dextrose agar (PDA). The PDA plates were then incubated at 25°C for 5 days with 12 hours light/dark cycles period. Among several fungal isolates obtained, four were selected for further analyses. Morphological identification revealed that the fungal conidia were hyaline, ovoid, fusiform (type that rarely form a septum) and unicellular with an average size of 18 - 20 μm × 4.5 -5.5 μm (n = 50). These morphological characters have a strong resemblance to B. dothidea that described by Slipper et al., (2004). For molecular identification, Internal transcribed spacer (ITS), beta-tubulin (β-tubulin) and elongation factor 1 alpha (EF-1α) were amplified and sequenced using universal primer pairs ITS1/ITS4 (White et al., 1990), Bt2a/Bt2b (Glass and Donaldson, 1995) and EF1/EF2 (O’Donnell et al. 1998) respectively. Alignment analysis showed that ITS (LC602817), β-tubulin (LC602820) and EF-1α (LC602821) sequences were 99-100% identical to the orthologous genes identified in B. dothidea infecting soybean in China [MW130133 (identity 537/536 bp), MW147482 (identity 394/394 bp) and MW147481 (identify 250/250 bp) respectively] (Chen et al. 2021). However, phylogenetic analysis of concatenated ITS, β-tubulin and EF-1α genes sequence established the identity of these isolate as B. dothidea. Due to the 100% identical at the molecular level, isolate NIHHS 20-262 was selected as a representative for further analysis. For the pathogenicity test, fungal mycelium (via PDA plug) was used as a source of inoculum for both intact and detached plumcot stems trials. For the intact trial, mycelium was inoculated on the wounded spots of ten plumcot stems that grew at the NIHHS trial farm. Ten days post-inoculation (dpi), disease symptoms i.e. stem colour turn from greenish to dark brown was observed at the inoculated sites. For the detached trial, mycelium was inoculated on the wounded spots of ten detached plumcot stems. The inoculated stems were kept in a closed container to maintain 90% humidity before incubated at 25ºC in the dark. Interestingly, on the detached stems, disease symptoms (greenish colour turn to dark brown) were observed to appear seven days early compare to intact stems. A sterile PDA plug replacing fungal mycelium served as a negative control and the result shows no symptoms were observed on either intact or detached control stems. For consistency purposes, pathogenicity tests on intact stems were performed on three different plumcot trees, whereas three biological replicates for detached stems. Isolation and re-identification of two colonies from the infected sites (intact and detached stems) were attempted and the results obtained were identical to the original isolate, thus fulfilling Koch’s postulates. Local farmers described this disease as a “certain death disease” in plumcot. Therefore, accurate identification of B. dothidea as the causal agent is critical for effective disease management to minimise qualitative and quantitative losses in the plumcot industry. Although has been reported to cause dieback disease in blueberry in Korea (Choi, 2011), to our knowledge, this is the first study to report B. dothidea causing stem rot diseases on the plumcot trees in Korea.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1659-1659 ◽  
Author(s):  
M. Vasić ◽  
N. Duduk ◽  
I. Vico ◽  
M. S. Ivanović

Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not has a worldwide distribution infecting species from over 80 genera of plants (1). Apart from being an important pathogen of apple trees in many countries, B. dothidea can cause pre- and postharvest decay on apple fruit (2). It has been known to cause canker and dieback of forest trees in Serbia (3), but has not been recorded either on apple trees or apple fruit. In December 2010, apple fruit cv. Idared (Malus × domestica Borkh.) with symptoms of white rot were collected from one storage in the area of Svilajnac in Serbia. The incidence of the disease was low but the symptoms were severe. Affected fruit were brown, soft, and almost completely decayed, while the internal decayed tissue appeared watery and brown. A fungus was isolated from symptomatic tissue of one fruit after surface sterilization with 70% ethanol (without rinsing) and aseptic removal of the skin. Small fragments of decayed tissue were placed on potato dextrose agar (PDA) and incubated in a chamber at 22°C under alternating light and dark conditions (12/12 h). Fungal colonies were initially whitish, but started turning dark gray to black after 5 to 6 days. Pycnidia were produced after 20 to 25 days of incubation at 22°C and contained one-celled, elliptical, hyaline conidia. Conidia were 17.19 to 23.74 μm (mean 18.93) × 3.72 to 4.93 μm (mean 4.45) (n = 50). These morphological characteristics are in accordance with those described for the fungus B. dothidea (4). Genomic DNA was isolated from the fungus and internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. The nucleotide sequence has been assigned to GenBank Accession No. KC994640. BLAST analysis of the 528-bp segment showed a 100% similarity with several sequences of B. dothidea deposited in NCBI GenBank, which confirmed morphological identification. Pathogenicity was tested by wound inoculation of five surface-sterilized, mature apple fruit cv. Idared with mycelium plugs (5 mm in diameter) of the isolate grown on PDA. Five control fruit were inoculated with sterile PDA plugs. After 5 days of incubation in plastic containers, under high humidity (RH 90 to 95%) at 22°C, typical symptoms of white rot developed on inoculated fruit, while wounded, uninoculated, control fruit remained symptomless. The isolate recovered from symptomatic fruit showed the same morphological features as original isolate. To the best of our knowledge, this is the first report of B. dothidea on apple fruit in Serbia. Apple is widely grown in Serbia and it is important to further investigate the presence of this pathogen in apple storage, as well as in orchards since B. dothidea may cause rapid disease outbreaks that result in severe losses. References: (1) G. H. Hapting Agriculture Handbook 386, USDA, Forest Service, 1971. (2) A. L. Jones and H. S. Aldwinckle Compendium of Apple and Pear Diseases. APS Press, St. Paul, MN, 1990. (3) D. Karadžic et al. Glasnik Šumarskog Fakulteta 83:87, 2000. (4) B. Slippers et al. Mycologia 96:83, 2004.


Author(s):  
Mladen Petres ◽  
Marta Loc ◽  
Mila Grahovac ◽  
Vera Stojsin ◽  
Dragana Budakov ◽  
...  

Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1785-1793 ◽  
Author(s):  
Yingying Song ◽  
Lili Li ◽  
Chao Li ◽  
Zengbin Lu ◽  
Xingyuan Men ◽  
...  

Botryosphaeria dothidea, the causal agent of apple ring rot, is an important fungal plant pathogen that can cause serious reductions in crop yield, and fungicides still play a crucial role in management. In the present study, the sensitivity of B. dothidea to fludioxonil, fluazinam, and pyrisoxazole was assessed in 162 isolates. Moreover, the protective and curative activity of the three fungicides on detached apple fruit as well as the control efficacy in the field were determined. The results showed that the mean 50% effective concentration (EC50) values (± standard deviation) were 0.01 ± 0.008, 0.04 ± 0.03, and 0.02 ± 0.01 μg ml−1, with individual EC50 values of 0.002 to 0.05, 0.003 to 0.19, and 0.005 to 0.26 μg ml−1 for fludioxonil, fluazinam, and pyrisoxazole, respectively. In addition, the frequency distributions of EC50 values were both unimodal curves. However, significant correlations (P < 0.05) were found between fludioxonil and iprodione, between fluazinam and iprodione, as well as between pyrisoxazole and difenoconazole. In field trials conducted during 2016 and 2017, the control efficacy ranged from 75.91 to 87.41% when fludioxonil was applied at 100 to 150 mg active ingredient (a.i.) kg−1, 81.90 to 85.13% when fluazinam was applied at 400 mg a.i. kg−1, and 77.43 to 80.97% when pyrisoxazole was applied at 400 mg a.i. kg−1. The control efficacy of the fungicides in storage was higher than 60%, with the exception of fluazinam. These results demonstrated that fludioxonil, fluazinam, and pyrisoxazole have considerable potential to control apple ring rot.


2013 ◽  
Vol 48 ◽  
pp. 35-40 ◽  
Author(s):  
Jelena Latinović ◽  
Angelo Mazzaglia ◽  
Nedeljko Latinović ◽  
Mirko Ivanović ◽  
Mark L. Gleason

Sign in / Sign up

Export Citation Format

Share Document