scholarly journals Patterns of Virulence Diversity in Puccinia triticina on Wheat in Egypt and the United States in 1998-2000

Plant Disease ◽  
2004 ◽  
Vol 88 (3) ◽  
pp. 271-279 ◽  
Author(s):  
D. V. McVey ◽  
M. Nazim ◽  
K. J. Leonard ◽  
D. L. Long

Frequent epidemics of leaf rust in Egypt have been attributed to the appearance of new races virulent on commonly grown wheat cultivars. In 1998, 1999, and 2000, 726 isolates of Puccinia triticina collected in Egypt were tested on a set of 20 single Lr gene differential wheat lines, and 160 races were identified. Three races, MBDLQ, MCDLQ, and TCDMQ, were found in Egypt in all 3 years. Race MCDLQ occurred at >20% frequency each year. Virulences to wheat lines with Lr1, 3, 10, 14b, 15, 17, 23, and 26 occurred at >45% each year. Seven races found in Egypt also were found in either Israel, Sudan, Turkey, or Romania in 1998 or 1999, although the one race common to Sudan and Egypt was rare in Egypt (only 1 year, <1%). Four races found in Israel also were found in Egypt, and the similarity of virulence frequencies in Israel and Egypt indicate at least some exchange of inoculum. Romania and Turkey did not appear to be major sources of inoculum for leaf rust epidemics in Egypt. The level of genetic diversity in leaf rust collections in Egypt in 1998 to 2000 was similar to that of collections from the Southern and Central Plains of the United States in 1998 to 2000. The high diversity of races and the recurrence of common races in each year in Egypt as in the Southern and Central Plains of the United States is consistent with oversummer survival of P. triticina within Egypt or in a neighboring country. The buildup of races virulent on cultivars with the most commonly used Lr genes for resistance in Egypt also is consistent with year-round survival within Egypt or cyclical exchange of inoculum between Egypt and a neighboring country.

Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 979-984 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State, in order to determine the virulence of the wheat leaf rust population in 2005. Single uredinial isolates (797 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, Lr28, and winter wheat lines with genes Lr41 and Lr42. In the United States in 2005, 72 virulence phenotypes of P. triticina were found. Virulence phenotype TDBGH, selected by virulence to resistance gene Lr24, was the most common phenotype in the United States, and was found throughout the Great Plains region. Virulence phenotype MCDSB with virulence to Lr17a and Lr26 was the second most common phenotype and was found widely in the wheat growing regions of the United States. Virulence phenotype MFPSC, which has virulence to Lr17a, Lr24, and Lr26, was the third most common phenotype, and was found in the Ohio Valley region, the Great Plains, and California. The highly diverse population of P. triticina in the United States will continue to present a challenge for the development of wheat cultivars with effective durable resistance to leaf rust.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1079-1084 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, Southeast, California, and the Pacific Northwest, in order to determine the virulence of the wheat leaf rust fungus in 2002. Single uredinial isolates (785 in total) were derived from the wheat leaf rust collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, Lr30, LrB, Lr10, Lr14a, and Lr18. In the United States in 2002, 52 virulence phenotypes of P. triticina were found. Virulence phenotype MBDS, which is virulent to resistance gene Lr17, was the most common phenotype in the United States. MBDS was found in the Southeast, Great Plains, and the Ohio Valley regions, and also in California. Phenotype MCDS, virulent to Lr17 and Lr26, was the second most common phenotype and occurred in the same regions as MBDS. Virulence phenotype THBJ, which is virulent to Lr16 and Lr26, was the third most common phenotype, and was found in the southern and northern central Great Plains region. Phenotype TLGJ, with virulence to Lr2a, Lr9, and Lr11, was the fourth most common phenotype and was found primarily in the Southeast and Ohio Valley regions. The Southeast and Ohio Valley regions differed from the Great Plains regions for predominant virulence phenotypes, which indicate that populations of P. triticina in those areas are not closely connected. The northern and southern areas of the Great Plains were similar for frequencies of predominant phenotypes, indicating a strong south to north migration of urediniospores.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 538-544 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

In 2007, leaf rust of wheat was severe throughout the Great Plains region of North America. Yield losses in wheat due to leaf rust were estimated to be 14% in Kansas. Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State in order to determine the virulence of the wheat leaf rust population in 2007. Single uredinial isolates (868 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, and Lr28, and on winter wheat lines with genes Lr41 and Lr42. Fifty-two virulence phenotypes were found. Virulence phenotypes TDBJG, MFPSC, and TDBJH were among the four most common phenotypes and were all virulent to resistance gene Lr24. These phenotypes were found throughout the Great Plains region. Phenotype MLDSD, with virulence to Lr9, Lr17, and Lr41, was also widely distributed in the Great Plains. In the soft red winter wheat region of the southeastern states, phenotypes TCRKG, with virulence to genes Lr11, Lr26, and Lr18, and MFGJH, with virulence to Lr24, Lr26, and Lr11, were among the common phenotypes. Virulence phenotypes with virulence to Lr16 were most frequent in the spring wheat region of the northern Great Plains. Virulence phenotypes with virulence to Lr11, Lr18, and Lr26 were most common in the soft red winter areas of the southeastern states and Ohio Valley. Virulence to Lr21 was not found in any of the tested isolates.


Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1219-1224 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, southeast, California, and Pacific Northwest, in order to determine the virulence of the wheat leaf rust population in 2004. Single uredinial isolates (757 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, and Lr28, and winter wheat lines with genes Lr41 and Lr42. In the United States in 2004, 52 virulence phenotypes of P. triticina were found. Virulence phenotype MCDSB, selected by virulence to resistance genes Lr17a and Lr26, was the most common phenotype in the United States and was found in all wheat growing areas. Virulence phenotype TBBGG, with virulence to Lr2a, was the second most common phenotype and was found primarily in the spring wheat region of the north-central states. Virulence phenotype MBDSB, which has virulence to Lr17a, was the third most common phenotype and was found in all wheat growing areas except California. Phenotype TNRJJ, with virulence to genes Lr9, Lr24, and Lr41, was the fourth most common phenotype and occurred in the southeastern states and throughout the Great Plains region. Virulence phenotypes avirulent to a second gene in the Thatcher differential line with Lr1 increased in frequency in the United States in 2004. The highly diverse population of P. triticina in the United States will continue to present a challenge for the development of wheat cultivars with effective durable resistance.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1216-1221 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by United States Department of Agriculture–Agricultural Research Service personnel and cooperators in the Great Plains, Ohio River Valley, southeastern states, Oregon, and Washington State in order to determine the virulence of the wheat leaf rust population in 2010. Single uredinial isolates (537 total) were derived from the collections and tested for virulence phenotype on 19 lines of ‘Thatcher’ wheat and a winter wheat line that are near-isogenic for 20 leaf rust resistance genes. In 2010, 38 virulence phenotypes were described in the United States. Virulence phenotypes MLDSD, TDBJG, and TCRKG were the three most common phenotypes. Phenotype MLDSD is virulent to Lr17 and Lr39/Lr41 and was widely distributed throughout the United States. Phenotype TDBJG is virulent to Lr24 and was found in both the soft red winter wheat and hard red winter wheat regions. Phenotype TCRKG is virulent to Lr11, Lr18, and Lr26 and was found mostly in the soft red winter wheat region in the eastern United States. Virulence to Lr21 was found for the first time in North America in isolates collected from spring wheat cultivars in North Dakota and Minnesota.


Plant Disease ◽  
2018 ◽  
Vol 102 (6) ◽  
pp. 1066-1071 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Leaves of wheat infected with the leaf rust fungus Puccinia triticina were obtained from farm fields and breeding plots at experimental stations in the Great Plains, Ohio River Valley, and southeastern states in 2016 in order to identify virulence phenotypes prevalent in the United States in different wheat-growing regions. In total, 496 single uredinial isolates derived from the leaf rust collections were tested for virulence to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes. In total, 71 virulence phenotypes were described in the United States in 2016. The three most common virulence phenotypes across the United States were MBTNB, MBDSD, and TNBJJ. Phenotype MBTNB is virulent to Lr11, and was most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype MBDSD is virulent to Lr17 and Lr39, and was most common in the hard red winter wheat area of the southern Great Plains. Phenotype TNBJJ is virulent to Lr24 and Lr39, which are present in the hard red winter wheat cultivars. The P. triticina population in the United States was characterized by two major regional groups of virulence phenotypes in the Great Plains region where hard red winter and spring wheat cultivars are grown, and in the southeastern states and Ohio Valley region where soft red winter wheat cultivars are grown. Isolates from New York State differed the most for virulence compared with the other two major regions.


Plant Disease ◽  
2008 ◽  
Vol 92 (8) ◽  
pp. 1241-1246 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State in order to determine the virulence of the wheat leaf rust population in 2006. Single uredinial isolates (718 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr2, and Lr28 and winter wheat lines with genes Lr41 and Lr42. In the United States in 2006, 56 virulence phenotypes were found. Virulence phenotypes TDBJG, TDBGG, and TDBJH were among the four most common phenotypes and were all virulent to resistance gene Lr24. These phenotypes were found throughout the Great Plains region. Phenotype MLDSD with virulence to Lr9, Lr17, and Lr41 was also widely distributed in the Great Plains. In the soft red winter wheat region of the southeastern states, phenotypes TCRKG and MBRKG with virulence to genes Lr11, Lr26, and Lr18 were among the common phenotypes. Virulence phenotypes with virulence to Lr16 were most frequent in the spring wheat region of the northern Great Plains. Virulence to Lr21 was not found in any of the tested isolates.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1145-1150 ◽  
Author(s):  
J. A Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by United States Department of Agriculture–Agricultural Research Service personnel and cooperators in the Great Plains, Ohio River Valley, southeastern states, and Washington State and Idaho in order to determine the virulence of the wheat leaf rust population in 2012. Single uredinial isolates (501 in total) were derived from the collections and tested for virulence phenotype on 20 lines of ‘Thatcher’ wheat that are near-isogenic for leaf rust resistance genes. In 2012, 74 virulence phenotypes were described in the United States. Virulence phenotypes TNBGJ, TCRKG, and MBTNB were the three most common phenotypes. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Phenotype TCRKG is virulent to Lr11, Lr18, and Lr26 and was found mostly in the soft red winter wheat region in the eastern United States. Phenotype MBTNB is virulent to Lr11 and was also found mostly in the soft red winter wheat region. The frequency of isolates with virulence to Lr39/41, which is present in many hard red winter wheat cultivars in the Great Plains region, continued to increase. Isolates with virulence to Lr21, which is present in many hard red spring wheat cultivars, also continued to increase in frequency in the northern Great Plains region.


2009 ◽  
Vol 99 (6) ◽  
pp. 750-758 ◽  
Author(s):  
M. E. Ordoñez ◽  
J. A. Kolmer

Wheat leaf rust caused by Puccinia triticina is widely distributed in the wheat growing regions of the United States and Canada, and is subject to selection for virulence phenotype by leaf rust resistance genes in wheat cultivars. The objective of this study was to determine the number of genetically differentiated groups of P. triticina that are currently present in North America. In total, 148 isolates of P. triticina from the 1980s to 2005 were collected from wheat-growing regions of the United States and Canada and tested for virulence on 20 lines of wheat with single genes for leaf rust resistance and for molecular genotype with 23 simple sequence repeat (SSR) markers. In total, 91 virulence phenotypes and 65 SSR genotypes were found. After removal of isolates with identical virulence and SSR genotypes, 125 isolates were included for further analysis. Bayesian cluster analysis indicated five different groups of isolates based on SSR genotypes that also differed for virulence to leaf rust resistance genes Lr2a, Lr2c, Lr3bg, Lr17, and Lr28. Isolates avirulent to Lr14a and Lr20 that have increased since 2003 had SSR genotypes identical or similar to older isolates in one of the five groups, indicating that these isolates were derived by mutation from the previously existing population of P. triticina. The representative collection of P. triticina isolates had characteristics consistent with an asexual dikaryotic population of genetically differentiated groups of SSR genotypes with high levels of heterozygosity and disequilibrium within which stepwise mutation at avirulence or virulence loci regularly occurs.


Sign in / Sign up

Export Citation Format

Share Document