scholarly journals Effectiveness of the Wheat Blast Resistance Gene Rmg8 in Bangladesh Suggested by Distribution of an AVR-Rmg8 Allele in the Pyricularia oryzae Population

2020 ◽  
Vol 110 (11) ◽  
pp. 1802-1807
Author(s):  
Jemal Tola Horo ◽  
Soichiro Asuke ◽  
Trinh Thi Phuong Vy ◽  
Yukio Tosa

Wheat blast caused by the Triticum pathotype of Pyricularia oryzae was first reported in 1985 in Brazil and recently spread to Bangladesh. We tested whether Rmg8 and RmgGR119, recently identified resistance genes, were effective against Bangladeshi isolates of the pathogen. Common wheat accessions carrying Rmg8 alone (IL191) or both Rmg8 and RmgGR119 (GR119) were inoculated with Brazilian isolates (Br48, Br5, and Br116.5) and Bangladeshi isolates (T-108 and T-109). Br48, T-108, and T-109 carried the eI type of AVR-Rmg8 (the avirulence gene corresponding to Rmg8) while Br5 and Br116.5 carried its variants, eII and eII’ types, respectively. Detached primary leaves of IL191 and GR119 were resistant to all isolates at 25°C. At a higher temperature (28°C), their resistance was still effective against the eI carriers but was reduced to a low level against the eII/eII’ carriers. A survey of databases and sequence analyses revealed that all Bangladeshi isolates carried the eI type which induced a higher level of resistance than the eII/eII’ types. The resistance of IL191 (Rmg8/−) to the eI carriers was maintained even at the heading stage and at the higher temperature. In addition, GR119 (Rmg8/RmgGR119) displayed higher levels of resistance than IL191 at this stage. These results suggest that Rmg8 combined with RmgGR119 will be useful in breeding for resistance against wheat blast in Bangladesh.

2008 ◽  
Vol 21 (4) ◽  
pp. 396-403 ◽  
Author(s):  
Yulin Jia ◽  
Rodger Martin

Resistance to the blast pathogen Magnaporthe oryzae is proposed to be initiated by physical binding of a putative cytoplasmic receptor encoded by a nucleotide binding site-type resistance gene, Pi-ta, to the processed elicitor encoded by the corresponding avirulence gene AVR-Pita. Here, we report the identification of a new locus, Ptr(t), that is required for Pi-ta–mediated signal recognition. A Pi-ta–expressing susceptible mutant was identified using a genetic screen. Putative mutations at Ptr(t) do not alter recognition specificity to another resistance gene, Pi-ks, in the Pi-ta homozygote, indicating that Ptr(t) is more likely specific to Pi-ta–mediated signal recognition. Genetic crosses of Pi-ta Ptr(t) and Pi-ta ptr(t) homozygotes suggest that Ptr(t) segregates as a single dominant nuclear gene. A ratio of 1:1 (resistant/susceptible) of a population of BC1 of Pi-ta Ptr(t) with pi-ta ptr(t) homozygotes indicates that Pi-ta and Ptr(t) are linked and cosegregate. Genotyping of mutants of pi-ta ptr(t) and Pi-ta Ptr(t) homozygotes using ten simple sequence repeat markers at the Pi-ta region determined that Pi-ta and Ptr(t) are located within a 9-megabase region and are of indica origin. Identification of Ptr(t) is a significant advancement in studying Pi-ta–mediated signal recognition and transduction.


2000 ◽  
Vol 12 (11) ◽  
pp. 2019 ◽  
Author(s):  
Marc J. Orbach ◽  
Leonard Farrall ◽  
James A. Sweigard ◽  
Forrest G. Chumley ◽  
Barbara Valent

2020 ◽  
Vol 87 (1) ◽  
pp. 1-8
Author(s):  
Yushan Jiang ◽  
Soichiro Asuke ◽  
Trinh Thi Phuong Vy ◽  
Yoshihiro Inoue ◽  
Yukio Tosa

Plant Disease ◽  
2016 ◽  
Vol 100 (10) ◽  
pp. 2025-2033 ◽  
Author(s):  
M. A. I. Khan ◽  
M. A. Ali ◽  
M. A. Monsur ◽  
A. Kawasaki-Tanaka ◽  
N. Hayashi ◽  
...  

The pathogenicity of 331 blast isolates (Pyricularia oryzae Cavara) collected from different regions and ecosystems for rice cultivation in Bangladesh was evaluated by compatibility on 23 differential varieties (DV), each harboring a single blast resistance gene, and susceptible ‘Lijiangxintuanheigu’ (LTH). A wide variation in virulence was found among the isolates, and 267 races were classified using a new designation system. Virulence of blast isolates against DV carrying the resistance genes Pia, Pib, Pit, Pik-s, Piz-t, Pi12(t), Pi19(t), and Pi20(t), as well as avirulence against those carrying Pish, Pi9, Pita-2, and Pita, was distributed widely in Bangladesh. Cluster analysis of the compatibility data on the DV initially classified the isolates into groups I and II. The virulence spectra of the two groups differed mainly according to the reactions of the DV to Pii, Pi3, Pi5(t), Pik-m, Pi1, Pik-h, Pik, Pik-p, and Pi7(t). Group I isolates were distributed mainly in rainfed lowlands, whereas group II isolates were found mainly in irrigated lowlands; however, there were no critical differences in geographic distribution of the blast isolates. In total, 26 isolates, which could be used to identify the 23 resistance genes of the DV on the basis of their reaction patterns, were selected as a set of standard differential blast isolates. To our knowledge, this is the first clear demonstration of the diversity and differentiation of blast races in Bangladesh. This information will be used to develop a durable blast protection system in that country.


2000 ◽  
Vol 12 (11) ◽  
pp. 2019-2032 ◽  
Author(s):  
Marc J. Orbach ◽  
Leonard Farrall ◽  
James A. Sweigard ◽  
Forrest G. Chumley ◽  
Barbara Valent

2020 ◽  
Vol 229 (1) ◽  
pp. 488-500
Author(s):  
Yoshihiro Inoue ◽  
Trinh Thi Phuoug Vy ◽  
Daichi Tani ◽  
Yukio Tosa

2009 ◽  
Vol 22 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Wei Li ◽  
Baohua Wang ◽  
Jun Wu ◽  
Guodong Lu ◽  
Yajun Hu ◽  
...  

The Magnaporthe oryzae avirulence gene AvrPiz-t activates immunity in a gene-for-gene fashion to rice mediated by the blast resistance gene Piz-t. To dissect the molecular mechanism underlying their recognition, we initiated the cloning of AvrPiz-t using a map-based cloning strategy. The AvrPiz-t gene was delimited to an approximately 21-kb genomic fragment, in which six genes were predicted. Complementation tests of each of these six candidate genes led to the final identification of AvrPiz-t, which encodes a 108-amino-acid predicted secreted protein with unknown function and no homologues in M. oryzae or in other sequenced fungi. We found that AvrPiz-t is present in the virulent isolate GUY11 but contains a Pot3 insertion at a position 462 bp upstream from the start codon. Complementation tests of AvrPiz-t genes driven by promoters of varying length revealed that a promoter larger than 462 bp is essential to maintain the AvrPiz-t function. These results suggest that a Pot3 insertion in GUY11 might interfere with the proper function of AvrPiz-t. Additionally, we found that AvrPiz-t can suppress the programmed cell death triggered by mouse BAX protein in Nicotiana benthamiana, identifying a mechanism by which AvrPiz-t may contribute virulence of M. oryzae.


Sign in / Sign up

Export Citation Format

Share Document