scholarly journals Race-Specific Adult-Plant Resistance in Winter Wheat to Stripe Rust and Characterization of Pathogen Virulence Patterns

2015 ◽  
Vol 105 (8) ◽  
pp. 1114-1122 ◽  
Author(s):  
Eugene A. Milus ◽  
David E. Moon ◽  
Kevin D. Lee ◽  
R. Esten Mason

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat in the Great Plains and southeastern United States. Growing resistant cultivars is the preferred means for managing stripe rust, but new virulence in the pathogen population overcomes some of the resistance. The objectives of this study were to characterize the stripe rust resistance in contemporary soft and hard red winter wheat cultivars, to characterize the virulence of P. striiformis f. sp. tritici isolates based on the resistances found in the cultivars, and to determine wheat breeders’ perceptions on the importance and methods for achieving stripe rust resistance. Seedlings of cultivars were susceptible to recent isolates, indicating they lacked effective all-stage resistance. However, adult-plants were resistant or susceptible depending on the isolate, indicating they had race-specific adult-plant resistance. Using isolates collected from 1990 to 2013, six major virulence patterns were identified on adult plants of twelve cultivars that were selected as adult-plant differentials. Race-specific adult-plant resistance appears to be the only effective type of resistance protecting wheat from stripe rust in eastern United States. Among wheat breeders, the importance of incorporating stripe rust resistance into cultivars ranged from high to low depending on the frequency of epidemics in their region, and most sources of stripe rust resistance were either unknown or already overcome by virulence in the pathogen population. Breeders with a high priority for stripe rust resistance made most of their selections based on adult-plant reactions in the field, whereas breeders with a low priority for resistance based selections on molecular markers for major all-stage resistance genes.

Plant Disease ◽  
2020 ◽  
Author(s):  
Yu Wu ◽  
Yuqi Wang ◽  
Fangjie Yao ◽  
Li Long ◽  
Jing Li ◽  
...  

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Chinese wheat landrace ‘Guangtoumai’ (GTM) exhibited a high-level resistance against predominant Pst races in China at the adult-plant stage. The objective of this research was to identify and map the major locus/loci for stripe rust resistance in GTM. A set of 212 recombinant inbred lines (RILs) was developed from a cross between GTM and Avocet S (AvS). The parents and RILs were evaluated in three field tests (2018, 2019, and 2020 at Chongzhou, Sichuan) with the currently predominant Pst races for final disease severity (FDS) and genotyped with the Wheat 55K SNP array to construct a genetic map with 1,031 SNP markers. A major locus, named QYr.GTM-5DL, was detected on chromosome 5DL in GTM. The locus was mapped in a 2.75 cM interval flanked by SNP markers AX-109855976 and AX-109453419, explaining up to 44.4% of the total phenotypic variation. Since no known Yr genes have been reported on chromosome 5DL, QYr.GTM-5DL is very likely a novel adult plant resistance (APR) locus. Haplotype analysis revealed that the resistance allele displayed enhanced levels of stripe rust resistance and is likely present in 5.3% of the 247 surveyed Chinese wheat landraces. The derived cleaved amplified polymorphic sequence (dCAPS) marker dCAPS-5722, converted from a SNP marker tightly linked to QYr.GTM-5DL with 0.3 cM, was validated on a subset of RILs and 48 commercial wheat cultivars developed in Sichuan. The results indicated that QYr.GTM-5DL with its linked dCAPS marker could be used in marker-assisted selection to improve stripe rust resistance in breeding programs, and this QTL will provide new and possibly durable resistance to stripe rust.


2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant varieties are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions, in addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under controlled greenhouse conditions.Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments under field tests, while four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers covering the whole genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, while four and one QTL conferring seedling and adult-plant resistance respectively were mapped distantly from previously reported stripe rust resistance genes or QTL and may be novel resistance loci.Conclusions: Our results provided an integrated view of stripe rust resistance resources in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant varieties are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions, in addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under controlled greenhouse conditions. Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments under field tests, while four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers covering the whole genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, while four and one QTL conferring seedling and adult-plant resistance respectively were mapped distantly from previously reported stripe rust resistance genes or QTL and may be novel resistance loci. Conclusions: Our results provided an integrated view of stripe rust resistance resources in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


2012 ◽  
Vol 63 (6) ◽  
pp. 539 ◽  
Author(s):  
M. A. Asad ◽  
B. Bai ◽  
C. X. Lan ◽  
J. Yan ◽  
X. C. Xia ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a fungal disease that causes significant yield losses in many wheat-growing regions of the world. Previously, five quantitative trait loci (QTLs) for adult-plant resistance (APR) to stripe rust resistance were identified in Italian wheat cultivar Libellula. The objectives of this study were to map QTLs for APR to powdery mildew in 244 F2 : 3 lines of Libellula/Huixianhong, to analyse the stability of detected QTLs across environments, and to assess the association of these QTLs with stripe rust resistance. Powdery mildew response was evaluated for 2 years in Beijing and for 1 year in Anyang. The correlation between averaged maximum disease severity (MDS) and averaged area under disease progress curve (AUDPC) over 2 years in Beijing was 0.98, and heritabilities of MDS and AUDPC were 0.65 and 0.81, respectively, based on the mean values averaged across environments. SSR markers were used to screen the parents and mapping population. Five QTLs were identified by inclusive composite interval mapping, designated as QPm.caas-2DS, QPm.caas-4BL.1, QPm.caas-6BL.1, QPm.caas-6BL.2, and QPm.caas-7DS. Three QTLs (QPm.caas-2DS and QPm.caas-6BL.1, and QPm.caas-6BL.2) seem to be new resistance loci for powdery mildew. QTLs QPm.caas-2DS and QPm.caas-4BL.1 were identified at the same position as previously mapped QTLs for stripe rust resistance in Libellula. The QTL QPm.caas-7DS, derived from Libellula, coincided with the slow rusting and slow mildewing locus Lr34/Yr18/Pm38. These results and the identified markers could be useful for wheat breeders aiming for durable resistance to both powdery mildew and stripe rust.


2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment.Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci.Conclusions: Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. Results Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. Conclusions Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


2021 ◽  
Author(s):  
Li Long ◽  
Fangjie Yao ◽  
Fangnian Guan ◽  
Yu-Kun Cheng ◽  
Luyao Duan ◽  
...  

Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult-plant resistance (APR) to stripe rust for more than 15 years. To identify QTL for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Pst races at the adult-plant stage and genotyped using the wheat 55K SNP array to construct a genetic map with 1,143 SNP markers. Three QTL, designated as QYr.AYH-1AS, QYr.AYH-5BL and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL and 7DS, respectively. RILs combining three QTL showed significantly reduced FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6–21.4% and 17.6–33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, while QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is likely present in 6.2% of the 323 surveyed Chinese wheat landraces. The Kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line, and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers should have potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.


2010 ◽  
Vol 61 (12) ◽  
pp. 1036 ◽  
Author(s):  
J. Zhang ◽  
C. R. Wellings ◽  
R. A. McIntosh ◽  
R. F. Park

Seedling resistances to stem rust, leaf rust and stripe rust were evaluated in the 37th International Triticale Screening Nursery, distributed by the International Wheat and Maize Improvement Centre (CIMMYT) in 2005. In stem rust tests, 12 and 69 of a total of 81 entries were postulated to carry Sr27 and SrSatu, respectively. When compared with previous studies of CIMMYT triticale nurseries distributed from 1980 to 1986 and 1991 to 1993, the results suggest a lack of expansion in the diversity of stem rust resistance. A total of 62 of 64 entries were resistant to five leaf rust pathotypes. In stripe rust tests, ~93% of the lines were postulated to carry Yr9 alone or in combination with other genes. The absence of Lr26 in these entries indicated that Yr9 and Lr26 are not genetically associated in triticale. A high proportion of nursery entries (63%) were postulated to carry an uncharacterised gene, YrJackie. The 13 lines resistant to stripe rust and the 62 entries resistant to leaf rust represent potentially useful sources of seedling resistance in developing new triticale cultivars. Field rust tests are needed to verify if seedling susceptible entries also carry adult plant resistance.


2011 ◽  
Vol 123 (8) ◽  
pp. 1401-1411 ◽  
Author(s):  
Yuanfeng Hao ◽  
Zhenbang Chen ◽  
Yingying Wang ◽  
Dan Bland ◽  
James Buck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document