seedling resistance
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 49)

H-INDEX

31
(FIVE YEARS 4)

VAVILOVIA ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 25-35
Author(s):  
T. V. Lebedeva ◽  
E. V. E. V. Zuev

Background. Bread wheat (Triticum aestivum L.) is one of the major food crops of humankind. Powdery mildew, caused by Blumeria graminis f. sp. tritici, is the most destructive foliar disease capable of causing great yield losses in epidemic years. Breeding for resistance to powdery mildew is the most economical and effective way to control this disease. By now, 68 loci were identified to contain more than 90 alleles of resistance to powdery mildew in wheat. However, there is a permanent necessity in finding new sources of resistance.The objective of the present study was to characterize the seedling powdery mildew resistance in some spring bread wheat varieties from the VIR collection and determine the inheritance of powdery mildew resistance in these accessions.Materials and methods. The powdery mildew resistant varieties ‘SW Kungsjet’ (k-66036), ‘SW Kronjet’ (k-66097), ‘Boett’ (k-66353), ‘Batalj’ (k-67116), ‘Stilett’ (k-67119) ‘Pasteur’ (k-66093) were crossed with a resistant line ‘Wembley 14.31’ (k-62557) containing the Pm12 gene, and with ‘SW Milljet’ (k-64434); the variety ‘Sibirka Yartsevskaya’ (k-38587) was used as a susceptible parent and control. The hybrid populations F2 were inoculated with the fungus population from local field and evaluated. The powdery mildew population manifested virulence to Pm1a, Pm2, Pm3a-f, Pm4a-b, Pm5a, Pm6, Pm7, Pm8, Pm9, Pm10, Pm11, Pm16, Pm19, Pm28, and avirulence to Pm12. The degree of resistance was assessed on days 8 and 10 after the inoculation using the Mains and Dietz scale (Mains, Dietz, 1930). The castrated flowers in the spikes were pollinated using the twell-method (Merezhko et al., 1973). Chi-squared for goodness of fit test was used to determine deviation of the observed data from the theoretically expected segregation.Results. According phytopathological and genetic tests, juvenile resistance in the varieties ‘SW Kungsjet’, ‘SW Kronjet’, ‘Boett’, ‘Batalj’, ‘Stilett’ and ‘Pasteur’ is controlled by dominant genes, which differ from Pm1a, Pm2, Pm3a-f, Pm4a-b, Pm5a, Pm6, Pm7, Pm8, Pm9, Pm10, Pm11, Pm12, Pm16, Pm19, and Pm28. The varieties ‘SW Milljet’, ‘SW Kronjet’ and ‘Pasteur’ had identical resistance genes. Genetic control of juvenile resistance to powdery mildew in ‘Batalj’, ‘Boett’, ‘Stilett’, ‘SW Milljet’, ‘SW Kungsjet’, ‘Pasteur’ was governed by different genes.Conclusions. The varieties ‘SW Kungsjet’, ‘SW Kronjet’, ‘Boett’ have been maintaining adult and seedling resistance since 2005, and ‘Batalj’, ‘Stilett’ and ‘Pasteur’ since 2017. Seedling resistance of these varieties to local powdery mildew population is controlled by dominant genes. A high degree of resistance was displayed by ‘SW Kungsjet’ and ‘SW Kronjet’ in the Novosibirsk Province, while ‘SW Kungsjet’ was resistant to mildew populations of Tatarstan. The variety ‘Pasteur’ manifested seedling resistance to leaf rust, and ‘SW Kungsjet’ was resistant to loose smut. By summing all the results, it may be suggested that the varieties ‘SW Kungsjet’, ‘SW Kronjet’, ‘Boett’, ‘Batalj’, ‘Stilett’ and ‘Pasteur can serve as good donors of powdery mildew resistance in wheat breeding.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sandra Rollar ◽  
Manuel Geyer ◽  
Lorenz Hartl ◽  
Volker Mohler ◽  
Frank Ordon ◽  
...  

Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Jerzy H. Czembor ◽  
Elzbieta Czembor ◽  
Radoslaw Suchecki ◽  
Nathan S. Watson-Haigh

Rusts and powdery mildew are diseases that have a major effect on yield loss in barley. Adult Plant Resistance (APR) is a post-seedling resistance mechanism and its expression is influenced by many factors, including host susceptibility and weather conditions, as well as the timing and severity of disease outbreaks. There are two mechanisms associated with APR: non-hypersensitive and minor gene APR. In this study, 431 European barley accessions were evaluated phenotypically over 2 years (2018–2019) under field conditions, scoring APR to powdery mildew (PM), barley brown rust (BBR), and stem rust (SR), and genotypically using DArTseq. Accessions were grouped into sub-collections by cultivation period (group A—cultivated prior 1985, B—cultivated after 1985, and C—Polish landraces) and by European country of origin or European region. GWAS was conducted for PM, BBR, and SR, and scored at the heading (HA) and milky-waxy (MW) seed stages in 2019 and maximum scores across all replicates were obtained 2018–2019. Disease severity was sufficient to differentiate the collection according to cultivation time and country of origin and to determine SNPs. Overall, the GWAS analysis identified 73 marker–trait associations (MTAs) with these traits. For PM resistance, we identified five MTAs at both the HA stage and when considering the maximal disease score across both growth stages and both years. One marker (3432490-28-T/C) was shared between these two traits; it is located on chromosome 4H. For BBR resistance, six MTAs at HA and one MTA at the MW stage in 2019 and seven MTAs, when considering the maximal disease score across both growth stages and both years, were identified. Of the 48 markers identified as being associated with SR resistance, 12 were on chromosome 7H, 1 was in the telomeric region of the short arm, and 7 were in the telomeric region of the long arm. Rpg1 has previously been mapped to 7HS. The results of this study will be used to create a Polish Gene Bank platform for precise breeding programs. The resistant genotypes and MTA markers will serve as a valuable resource for breeding for PM, BBR, and SR resistance in barley.


2021 ◽  
Vol 25 (7) ◽  
pp. 740-745
Author(s):  
E. S. Skolotneva ◽  
V. N. Kelbin ◽  
V. P. Shamanin ◽  
N. I. Boyko ◽  
V. A. Aparina ◽  
...  

Present-day wheat breeding for immunity exploits extensively closely related species from the family Triticeae as gene donors. The 2NS/2AS translocation has been introduced into the genome of the cultivated cereal Triticum aestivum from the wild relative T. ventricosum. It contains the Lr37, Yr17, and Sr38 genes, which support seedling resistance to the pathogens Puccinia triticina Eriks., P. striiformis West. f. sp. tritici, and P. graminis Pers. f. sp. tritici Eriks. & E. Henn, which cause brown, yellow, and stem rust of wheat, respectively. This translocation is present in the varieties Trident, Madsen, and Rendezvous grown worldwide and in the Russian varieties Morozko, Svarog, Graf, Marquis, and Homer bred in southern regions. However, the Sr38 gene has not yet been introduced into commercial varieties in West Siberia; thus, it remains of practical importance for breeding in areas where populations of P. graminis f. sp. tritici are represented by avirulent clones. The main goal of this work was to analyze the frequency of clones (a)virulent to the Sr38 gene in an extended West Siberian collection of stem rust agent isolates. In 2019–2020, 139 single pustule isolates of P. graminis f. sp. tritici were obtained on seedlings of the standard susceptible cultivar Khakasskaya in an environmentally controlled laboratory (Institute of Cytology and Genetics SB RAS) from samples of urediniospores collected on commercial and experimental bread wheat fields in the Novosibirsk, Omsk, Altai, and Krasnoyarsk regions. By inoculating test wheat genotypes carrying Sr38 (VPM1 and Trident), variations in the purity of (a)virulent clones were detected in geographical samples of P. graminis f. sp. tritici. In general, clones avirulent to Sr38 constitute 60 % of the West Siberian fungus population, whereas not a single virulent isolate was detected in the Krasnoyarsk collection. The Russian breeding material was screened for sources of the stem rust resistance gene by using molecular markers specific to the 2NS/2AS translocation. A collection of hybrid lines and varieties of bread spring wheat adapted to West Siberia (Omsk SAU) was analyzed to identify accessions promising for the region. The presence of the gene was postulated by genotyping with specific primers (VENTRIUP-LN2) and phytopathological tests with avirulent clones of the fungus. Dominant Sr38 alleles were identified in Lutescens 12-18, Lutescens 81-17, Lutescens 66-16, Erythrospermum 79/07, 9-31, and 8-26. On the grounds of the composition of the West Siberian P. graminis f. sp. tritici population, the Sr38 gene can be considered a candidate for pyramiding genotypes promising for the Novosibirsk, Altai, and Krasnoyarsk regions. 


Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1017
Author(s):  
Jerzy H. Czembor ◽  
Elżbieta Czembor

Powdery mildew on barley, caused by the pathogen Blumeria graminis f. sp. hordei, occurs worldwide and can result in severe yield loss. Germplasm of barley, including landraces, commercial cultivars, wild relatives and breeding lines are stored in more than 200 institutions. There is a need for characterization of this germplasm in terms of resistance to biotic and abiotic stresses. This is necessary in order to use specific accessions in breeding programs. In the present study, 129 barley landraces originated from Turkey and provided by the ICARDA genebank were tested for resistance to powdery mildew. Seedling resistance tests after inoculation with 19 differentiated isolates of B. graminis f. sp. hordei were used to postulate the presence of resistance genes. From the 129 landraces studied, plants of 19 (14.7%) of them showed resistance to infection with powdery mildew. Based on preliminary tests from these 19 landraces, 25 resistant single plant lines were selected for testing with differential powdery mildew isolates. Seven lines were resistant to all 19 isolates used. However, only one line (5583-1-4) showed resistance scores of zero against all isolates used. It is likely that this line possesses unknown, but highly effective genes for resistance. In five resistant lines it was not possible to postulate the presence of specific resistance genes. In 19 lines the presence of the genes Mlp, Mlk, Mlh, Mlg, Ml(CP), Mlat, Mla3, Mla6, Mla7 and Mla22 were postulated. These new sources of highly effective powdery mildew resistance in barley landraces from Turkey could be successfully used in breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongna Li ◽  
Lei Hua ◽  
Matthew N. Rouse ◽  
Tianya Li ◽  
Shuyong Pang ◽  
...  

Wheat stem (or black) rust is one of the most devastating fungal diseases, threatening global wheat production. Identification, mapping, and deployment of effective resistance genes are critical to addressing this challenge. In this study, we mapped and characterized one stem rust resistance (Sr) gene from the tetraploid durum wheat variety Kronos (temporary designation SrKN). This gene was mapped on the long arm of chromosome 2B and confers resistance to multiple virulent Pgt races, such as TRTTF and BCCBC. Using a large mapping population (3,366 gametes), we mapped SrKN within a 0.29 cM region flanked by the sequenced-based markers pku4856F2R2 and pku4917F3R3, which corresponds to 5.6- and 7.2-Mb regions in the Svevo and Chinese Spring reference genomes, respectively. Both regions include a cluster of nucleotide binding leucine-repeat (NLR) genes that likely includes the candidate gene. An allelism test failed to detect recombination between SrKN and the previously mapped Sr9e gene. This result, together with the similar seedling resistance responses and resistance profiles, suggested that SrKN and Sr9e may represent the same gene. We introgressed SrKN into common wheat and developed completely linked markers to accelerate its deployment in the wheat breeding programs. SrKN can be a valuable component of transgenic cassettes or gene pyramids that includes multiple resistance genes to control this devastating disease.


Plant Disease ◽  
2021 ◽  
Author(s):  
Mercy Wamalwa ◽  
Ruth Wanyera ◽  
Julian Rodriguez-Algaba ◽  
Lesley Boyd ◽  
James Owuoche ◽  
...  

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of Pst races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty Pst isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped using stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate among the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the Pst samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing Pst virulence was found in the Kenyan Pst population, and that diverse Pst race groups dominated different wheat growing regions. Moreover, recent Pst races in east Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in understanding Pst evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust. Keywords: pathogenicity, Puccinia f. sp. tritici stripe (yellow) rust, Triticum aestivum


2021 ◽  
Vol 12 ◽  
Author(s):  
Yayuan Chen ◽  
Adriana Puentes ◽  
Christer Björkman ◽  
Agnès Brosset ◽  
Helena Bylund

Exogenous application of the plant hormone methyl jasmonate (MeJA) can trigger induced plant defenses against herbivores, and has been shown to provide protection against insect herbivory in conifer seedlings. Other methods, such as mechanical damage to seedlings, can also induce plant defenses, yet few have been compared to MeJA and most studies lack subsequent herbivory feeding tests. We conducted two lab experiments to: (1) compare the efficacy of MeJA to mechanical damage treatments that could also induce seedling resistance, (2) examine if subsequent insect damage differs depending on the time since induction treatments occurred, and (3) assess if these induction methods affect plant growth. We compared Scots pine (Pinus sylvestris) seedlings sprayed with MeJA (10 or 15 mM) to seedlings subjected to four different mechanical bark damage treatments (two different bark wound sizes, needle-piercing damage, root damage) and previous pine weevil (Hylobius abietis) damage as a reference treatment. The seedlings were exposed to pine weevils 12 or 32 days after treatments (early and late exposure, hereafter), and resistance was measured as the amount of damage received by plants. At early exposure, seedlings treated with needle-piercing damage received significantly more subsequent pine weevil feeding damage than those treated with MeJA. Seedlings treated with MeJA and needle-piercing damage received 84% less and 250% more pine weevil feeding, respectively, relative to control seedlings. The other treatments did not differ statistically from control or MeJA in terms of subsequent pine weevil damage. For the late exposure group, plants in all induction treatments tended to receive less pine weevil feeding (yet this was not statistically significant) compared to control seedlings. On the other hand, MeJA significantly slowed down seedling growth relative to control and all other induction treatments. Overall, the mechanical damage treatments appeared to have no or variable effects on seedling resistance. One of the treatments, needle-piercing damage, actually increased pine weevil feeding at early exposure. These results therefore suggest that mechanical damage shows little potential as a plant protection measure to reduce feeding by a bark-chewing insect.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1484
Author(s):  
Alma Kokhmetova ◽  
Shynbolat Rsaliyev ◽  
Makpal Atishova ◽  
Madina Kumarbayeva ◽  
Angelina Malysheva ◽  
...  

Leaf rust, caused by Puccinia triticina (Ptr), is a significant disease of spring wheat spread in Kazakhstan. The development of resistant cultivars importantly requires the effective use of leaf rust resistance genes. This study aims to: (i) determine variation in Ptr population using races from the East Kazakhstan, Akmola, and Almaty regions of Kazakhstan; (ii) examine resistance during seedling and adult plant stages; and (iii) identify the sources of Lr resistance genes among the spring wheat collection using molecular markers. Analysis of a mixed population of Ptr identified 25 distinct pathotypes. Analysis of these pathotypes using 16 Thatcher lines that are near-isogenic for leaf rust resistance genes (Lr) showed different virulence patterns, ranging from least virulent “CJF/B” and “JCL/G” to highly virulent “TKT/Q”. Most of the pathotypes were avirulent to Lr9, Lr19, Lr24, and Lr25 and virulent to Lr1, Lr2a, Lr3ka, Lr11, and Lr30. The Ptr population in Kazakhstan is diverse, as indicated by the range of virulence observed in five different races analyzed in this study. The number of genotypes showed high levels of seedling resistance to each of the five Ptr races, thus confirming genotypic diversity. Two genotypes, Stepnaya 62 and Omskaya 37, were highly resistant to almost all five tested Ptr pathotypes. Stepnaya 62, Omskaya 37, Avangard, Kazakhstanskaya rannespelaya, and Kazakhstanskaya 25 were identified as the most stable genotypes for seedling resistance. However, most of the varieties from Kazakhstan were susceptible in the seedling stage. Molecular screening of these genotypes showed contrasting differences in the genes frequencies. Among the 30 entries, 22 carried leaf rust resistance gene Lr1, and two had Lr9 and Lr68. Lr10 and Lr28 were found in three and four cultivars, respectively. Lr19 was detected in Omskaya 37. Two single cultivars separately carried Lr26 and Lr34, while Lr37 was not detected in any genotypes within this study. Field evaluation demonstrated that the most frequent Lr1 gene is ineffective. Kazakhstanskaya 19 and Omskaya 37 had the highest number of resistance genes: three and four Lr genes, respectively. Two gene combinations (Lr1, Lr68) were detected in Erythrospermum 35 and Astana. The result obtained may assist breeders in incorporating effective Lr genes into new cultivars and developing cultivars resistant to leaf rust.


Author(s):  
Subas Malla ◽  
Kevin M Crosby ◽  
Edgar Correa

Among three races of Colletotrichum orbiculare, causes of anthracnose of cucurbits, screening for race 2 resistance was studied under greenhouse conditions at various inoculum concentrations and rated plants on different days post inoculation (DPI). The objectives of this study were optimizing inoculum concentration and phenotyping DPI for seedling resistance. Five inoculum concentrations were compared (2.5 x 104, 5 x 104, 1 x 105, 2.5 x 105, and 5 x 105 conidial spore ml-1). Four watermelon genotypes, ‘Black Diamond’, ‘Charleston Gray 133’, PI 543210, PI 189225, and two cucumber genotypes, ‘Marketer’, and ‘H19 Little Leaf’ were evaluated. Disease was recorded on the percentage of cotyledon area lesion (PCL), severity of hypocotyl lesion (SHL), severity of petiole lesion (SPL), percentage of leaf area lesion (PLL), as well as a disease index (INDX) from 5 to 14 DPI. There was a significant difference among genotypes and inoculum concentrations. The resistant PI 189225 was significantly different (P < 0.05) from the highly susceptible PI 543210. Inoculum 1 x 105 spore ml-1 was at par with 5 x 105 and 2.5 x 105 but significantly different from 5 x 104 and 2.5 x 104 for AUDPS PLL, AUDPS INDX, AUDPS SPL, and AUDPS SHL. Inoculum at 1 x 105 spore ml-1 was the most optimal to differentiate germplasm. Genotype plus genotype-by-environment (GGE) biplot showed that PLL was a representative trait. A single PLL rating on 9 DPI would optimize resources for screening a large set of germplasm for anthracnose resistance in a watermelon breeding program.


Sign in / Sign up

Export Citation Format

Share Document