adult plant resistance
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 69)

H-INDEX

43
(FIVE YEARS 5)

Plant Disease ◽  
2022 ◽  
Author(s):  
Gensheng Zhang ◽  
Wei Liu ◽  
Xiangrui Cheng ◽  
Lin Wang ◽  
Xiaxia Tian ◽  
...  

In 2017, a new race (TSA-6) of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici, virulent to resistance gene Yr5 were detected in China. However, whether Chinese wheat cultivars are resistant to the new races was unknown. In this study, two isolates (TSA-6 and TSA-9) with virulence to Yr5 were tested on other wheat Yr gene lines for their avirulence/virulence patterns and used, together with prevalent races CYR32 and CYR34 without the Yr5 virulence, to evaluate 165 major Chinese wheat cultivars for their reactions. Isolates TSA-6 and TSA-9 had similar but different virulence spectra, and therefore should be considered as two different races. Their avirulent/virulence patterns were remarkably different from that of CYR34 but quite similar to that of CYR32. Of the 165 wheat cultivars, 21 had all-stage resistance to TSA-6, 34 to TSA-9, and 20 to both races. Adult-plant resistance (APR) was detected in 35 cultivars to TSA-6 and 27 to TSA-9, but only 3 cultivars showed APR to both new races. Slow rusting resistance was observed in 24 cultivars to TSA-6 and of 33 to TSA-9. Analysis of variance (ANOVA) of disease index indicated a significant difference among cultivars, but not among the four races. Based on the molecular marker data, a low percentage of wheat cultivars carried Yr5, Yr7, Yr10, Yr15, Yr26, and/or YrSP. As TSA-6 and TSA-9 can be a serious threat to wheat production in China, monitoring TSA-6, TSA-9, and other races are continually needed.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Jerzy H. Czembor ◽  
Elzbieta Czembor ◽  
Radoslaw Suchecki ◽  
Nathan S. Watson-Haigh

Rusts and powdery mildew are diseases that have a major effect on yield loss in barley. Adult Plant Resistance (APR) is a post-seedling resistance mechanism and its expression is influenced by many factors, including host susceptibility and weather conditions, as well as the timing and severity of disease outbreaks. There are two mechanisms associated with APR: non-hypersensitive and minor gene APR. In this study, 431 European barley accessions were evaluated phenotypically over 2 years (2018–2019) under field conditions, scoring APR to powdery mildew (PM), barley brown rust (BBR), and stem rust (SR), and genotypically using DArTseq. Accessions were grouped into sub-collections by cultivation period (group A—cultivated prior 1985, B—cultivated after 1985, and C—Polish landraces) and by European country of origin or European region. GWAS was conducted for PM, BBR, and SR, and scored at the heading (HA) and milky-waxy (MW) seed stages in 2019 and maximum scores across all replicates were obtained 2018–2019. Disease severity was sufficient to differentiate the collection according to cultivation time and country of origin and to determine SNPs. Overall, the GWAS analysis identified 73 marker–trait associations (MTAs) with these traits. For PM resistance, we identified five MTAs at both the HA stage and when considering the maximal disease score across both growth stages and both years. One marker (3432490-28-T/C) was shared between these two traits; it is located on chromosome 4H. For BBR resistance, six MTAs at HA and one MTA at the MW stage in 2019 and seven MTAs, when considering the maximal disease score across both growth stages and both years, were identified. Of the 48 markers identified as being associated with SR resistance, 12 were on chromosome 7H, 1 was in the telomeric region of the short arm, and 7 were in the telomeric region of the long arm. Rpg1 has previously been mapped to 7HS. The results of this study will be used to create a Polish Gene Bank platform for precise breeding programs. The resistant genotypes and MTA markers will serve as a valuable resource for breeding for PM, BBR, and SR resistance in barley.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2262
Author(s):  
Ghady E. Omar ◽  
Yasser S. A. Mazrou ◽  
Mohammad K. EL-Kazzaz ◽  
Kamal E. Ghoniem ◽  
Mammduh A. Ashmawy ◽  
...  

Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers. Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 ‘R’.


Author(s):  
E. I. Gultyaeva ◽  
E. L. Shaydayuk

Background. Wheat leaf rust caused by Puccinia triticina Erikss. is a significant wheat disease in all regions of the Russian Federation. The genetic diversity of the cultivated wheat varieties regarding the type of resistance and genes that control it ensures reliable protection of this crop against the pathogen. The aim of this work was to characterize the diversity of new Russian varieties of winter and spring common wheat for leaf rust resistance genes (Lr-genes).Materials and Methods. The research material was represented by 43 varieties of winter and 25 of spring wheat included in the State Register of Selection Achievements of the Russian Federation in 2018-2020.Results. Using molecular markers, 18 Lr genes were identified: Lr1, Lr3, Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, Lr25, Lr26, Lr28, Lr29, Lr34, Lr35, Lr37, Lr41 (39), Lr47 and Lr66. A phytopathological test was used to clarify the results of molecular analysis. Ninety-three percent of the studied wheat varieties were found to contain Lr genes, either separately or in combinations. These were the highly and partially effective genes Lr24, Lr9, and Lr19, adult plant resistance genes Lr34 and Lr37, and ineffective genes Lr1, Lr3, Lr10, Lr20, and Lr26. The Lr24 gene has been identified for the first time in Russian varieties. The spring variety ‘Leader 80’, harboring this gene, is recommended for cultivation in the West Siberian and East Siberian regions. An effective combination of Lr9 + Lr26 genes, individually overcome by the pathogen, was determined in the spring cultivar ‘Silach’, highly resistant to leaf rust. The Lr9 gene was found in the winter variety ‘Gerda’, which is recommended for cultivation in the North Caucasus region. Previously, the varieties with Lr9 were not grown in the North Caucasus. An increase in the number of leaf rust resistant accessions protected by the effective adult plant resistance gene Lr37 is noted among wheat varieties undergoing regional adaptation testing. Many of the identified Lr genes (Lr19, Lr24, Lr26, Lr34, Lr37) are linked with effective Sr genes (Sr25, Sr24, Sr31, Sr57, and Sr38), which additionally ensures stable genetic protection of wheat against stem rust.Conclusions. The obtained information about representation of Lr genes in wheat varieties should be used in regional breeding programs. A timely replacement of genetically protected varieties allows stabilizing the populational composition of the phytopathogen and reducing the likelihood of epiphytotics.


2021 ◽  
Author(s):  
Sahbi Ferjaoui ◽  
Lamia Aouini ◽  
Rim Ben Slimane ◽  
Karim Ammar ◽  
Suzanne Dreisigacker ◽  
...  

Abstract Background Septoria tritici blotch (STB), caused by Zymoseptoria tritici (Z. tritici), is an important biotic threat to durum wheat in the entire Mediterranean Basin. Although most durum wheat cultivars are susceptible to Z. tritici, research in STB resistance in durum wheat has been limited. Results In our study, we have identified resistance to a wide array of Z. tritici isolates in the Tunisian durum wheat landrace accession ‘Agili39’. Subsequently, a recombinant inbred population was developed and tested under greenhouse conditions at the seedling stage with eight Z. tritici isolates and for five years under field conditions with three Z. tritici isolates. Mapping of quantitative trait loci (QTL) resulted in the identification of two major QTL on chromosome 2B designated as Qstb2B_1 and Qstb2B_2. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6 %), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42 %) and has been effective at the field trials against two Z. tritici isolates. The Qstb2B_1 QTL was mapped at the seedling and the adult plant stage (highest LOD 33.9, explained variance 61.6 %), conferring an effective resistance against five Z. tritici isolates. The Qstb2B_2 conferred adult plant resistance (highest LOD 32.9, explained variance 42 %) and has been effective at the field trials against two Z. tritici. The physical positions of the flanking markers linked to Qstb2B_1 and Qstb2B_2 indicate that these two QTL are 5Mb apart. In addition, we identified two minor QTL on chromosomes 1A (Qstb1A) and chromosome 7A (Qstb7A) (highest LODs 4.6 and 4.0, and explained variances of 16 % and 9%, respectively) that were specific to three and one Z. tritici isolates, respectively. All identified QTL were derived from the landrace accession Agili39 that represents a valuable source for STB resistance in durum wheat. Conclusion This study demonstrates that Z. tritici resistance in the ‘Agili39’ landrace accession is controlled by two minor and two major QTL acting in an additive mode.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuqi Wang ◽  
Fengying Liang ◽  
Fangnian Guan ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

The Chinese wheat landrace “Gaoxianguangtoumai” (GX) has exhibited a high level of adult-plant resistance (APR) to stripe rust in the field for more than a decade. To reveal the genetic background for APR to stripe rust in GX, a set of 249 F6:8 (F6, F7, and F8) recombinant inbred lines (RILs) was developed from a cross between GX and the susceptible cultivar “Taichung 29.” The parents and RILs were evaluated for disease severity at the adult-plant stage in the field by artificial inoculation with the currently predominant Chinese Puccinia striiformis f. sp. tritici races during three cropping seasons and genotyped using the Wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,871 SNP markers finally. Two stable APR quantitative trait loci (QTL), QYr.GX-2AS and QYr.GX-7DS in GX, were detected on chromosomes 2AS and 7DS, which explained 15.5–27.0% and 11.5–13.5% of the total phenotypic variation, respectively. Compared with published Yr genes and QTL, QYr.GX-7DS and Yr18 may be the same, whereas QYr.GX-2AS is likely to be novel. Haplotype analysis revealed that QYr.GX-2AS is likely to be rare which presents in 5.3% of the 325 surveyed Chinese wheat landraces. By analyzing a heterogeneous inbred family (HIF) population from a residual heterozygous plant in an F8 generation of RIL, QYr.GX-2AS was further flanked by KP2A_36.85 and KP2A_38.22 with a physical distance of about 1.37Mb and co-segregated with the KP2A_37.09. Furthermore, three tightly linked Kompetitive allele-specific PCR (KASP) markers were highly polymorphic among 109 Chinese wheat cultivars. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


Sign in / Sign up

Export Citation Format

Share Document