scholarly journals NMDA receptor activation is required for the manifestation and maintenance of ventilatory long‐term facilitation in awake rats

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Liming Ling ◽  
Michelle McGuire
PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222066 ◽  
Author(s):  
Michelle L. Kloc ◽  
Bruno Pradier ◽  
Anda M. Chirila ◽  
Julie A. Kauer

2006 ◽  
Vol 96 (6) ◽  
pp. 3512-3516 ◽  
Author(s):  
Corinna Walz ◽  
Kay Jüngling ◽  
Volkmar Lessmann ◽  
Kurt Gottmann

Activity-dependent developmental maturation of the neocortical network is thought to involve the stabilization and potentiation of immature synapses. In particular, N-methyl-d-aspartate (NMDA) receptor-dependent long-term plasticity that is expressed presynaptically appears to be crucial for the selection of functionally adequate synapses. However, presynaptic expression of long-term plasticity in neocortical neurons has mainly been studied indirectly by electrophysiological techniques. Here we analyzed presynaptic plasticity directly by repeated imaging of actively cycling presynaptic vesicles with the styryl dye FM4-64 in cultured neocortical neurons at 34°C. To monitor long-term changes, stimulation-induced saturating FM4-64 staining and subsequent destaining was performed twice with an interval of 1.5 h between stainings and with the first staining serving as a plasticity stimulus. In the vast majority of presynaptic release sites, we found an increase in the mean fluorescence intensity after the second staining indicating an enhanced number of cycling synaptic vesicles. Most intriguingly, we additionally observed the appearance of new active release sites. As demonstrated by the addition of the NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5), both plasticity phenomena were strictly dependent on NMDA receptor activation. This suggests that a subpopulation of release sites was functionally silent during the first round of staining. Moreover, we studied a potential role of brain-derived neurotrophic factor (BDNF) in this type of presynaptic plasticity by imaging BDNF-deficient neocortical neurons. The increase in fluorescence intensity was strongly inhibited in BDNF-knockout neurons and was absent in wild-type neurons in the presence of BDNF scavenging trkB receptor bodies. These results indicate that BDNF might play an important role as a plasticity-related messenger molecule in neocortical neurons.


1998 ◽  
Vol 80 (1) ◽  
pp. 452-457 ◽  
Author(s):  
Eric Klann

Klann, Eric. Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J. Neurophysiol. 80: 452–457, 1998. Long-term potentiation (LTP) in hippocampal area CA1 is generally dependent on N-methyl-d-aspartate (NMDA) receptor activation. Reactive oxygen species (ROS), including superoxide, are produced in response to NMDA receptor activation in a number of brain regions, including the hipppocampus. In this study, two cell-permeable manganese porphyrin compounds that mimic superoxide dismutase (SOD) were used to determine whether production of superoxide is required for the induction of LTP in area CA1 of rat hippocampal slices. Incubation of hippocampal slices with either Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) or Mn(III) tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP) prevented the induction of LTP. Incubation of slices with either light-inactivated MnTBAP or light-inactivated MnTMPyP had no effect on induction of LTP. Neither MnTBAP nor MnTMPyP was able to reverse preestablished LTP. These observations suggest that production of superoxide occurs in response to LTP-inducing stimulation and that superoxide is necessary for the induction of LTP.


2012 ◽  
Vol 33 (4) ◽  
pp. 431-437 ◽  
Author(s):  
Feng Sun ◽  
Jian-dong Sun ◽  
Ning Han ◽  
Chuang-jun Li ◽  
Yu-he Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document