conditioned taste aversion
Recently Published Documents


TOTAL DOCUMENTS

877
(FIVE YEARS 33)

H-INDEX

55
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Bridget Williams Brox

<p>Drug addiction is a ubiquitous phenomenon worldwide that places tremendous financial and psychological burden on societies, families and the individual. Interestingly, only a small percentage of individuals ( 20%), regardless their drug of choice, go on to develop the compulsive behaviours that define drug addiction. Clinical studies have shown that there is a subset of the population with a genetically determined reduction in the serotonin transporter that may increase vulnerability to developing a variety of psychiatric disorders like depression, anxiety and drug addiction.  To investigate the influence of reduced serotonin transporter function in the laboratory we studied the effects of MDMA (‘ecstasy’) and heroin in a genetically altered animal model: the serotonin transporter (SERT) knockout rat. Homozygous (HOM) animals lack SERT function completely while heterozygous (HET) have about 50% SERT function compared to the wild type (WT). Groups of HOM, HET and WT animals completed MDMA or heroin self-administration experiments. A robust genotype effect emerged for animals self-administering MDMA; facilitation of MDMA self-administration was inversely related to SERT function. HOM animals, without exception, reached acquisition criterion significantly faster than the HET animals; HET animals then showed higher acquisition rates compared to the WT animals. In contrast, there were no differences between the genotypes when animals self-administered heroin. To investigate the driving force behind facilitated MDMA self-administration in animals with reduced SERT function locomotor activity and conditioned taste aversion experiments were undertaken. In contrast to the drug self-administration experiments,MDMA induced hyperactivity was positively related to SERT function. Thus, it was significantly reduced in HOM and HET animals compared to the WT. Again, heroin treatment did not produce differences in locomotion between the genotypes. MDMA induced conditioned taste aversion revealed only a main effect of dose with robust conditioned taste aversion for both drug doses, although a trend indicated that HOM animals may have heightened sensitivity to MDMA. However, heroin treatment failed to produce a conditioned taste aversion effect in any of the groups regardless of dose. Beyond the aforementioned behavioural experiments striatal brain tissue from the animals that had previously self-administered MDMA or heroin was analysed via quantitative reverse transcription polymerase chain reaction; five targets were evaluated to quantify drug induced changes in brain derived neurotrophic factor gene expression (BDNF). Several BDNF isoforms (total BDNF, BDNF III and BDNF IV) were significantly increased in animals that had self-administered MDMA; this effect was true across HOM, HET and WT subjects. Comparatively, animals that had self-administered heroin did not show a difference in BDNF expression compared to untreated control animals.  This suite of experiments provides insight into the influence of a compromised serotonergic system on the development of drug addiction. That is, while reduced SERT function does not appear to augment the addictive properties of drugs like heroin there is reason to suspect that it does confer additional susceptibility to developing addiction to drugs like MDMA, highlighting the hypothesis that different classes of addictive substances act through different neurobiological pathways.</p>


2021 ◽  
Author(s):  
◽  
Bridget Williams Brox

<p>Drug addiction is a ubiquitous phenomenon worldwide that places tremendous financial and psychological burden on societies, families and the individual. Interestingly, only a small percentage of individuals ( 20%), regardless their drug of choice, go on to develop the compulsive behaviours that define drug addiction. Clinical studies have shown that there is a subset of the population with a genetically determined reduction in the serotonin transporter that may increase vulnerability to developing a variety of psychiatric disorders like depression, anxiety and drug addiction.  To investigate the influence of reduced serotonin transporter function in the laboratory we studied the effects of MDMA (‘ecstasy’) and heroin in a genetically altered animal model: the serotonin transporter (SERT) knockout rat. Homozygous (HOM) animals lack SERT function completely while heterozygous (HET) have about 50% SERT function compared to the wild type (WT). Groups of HOM, HET and WT animals completed MDMA or heroin self-administration experiments. A robust genotype effect emerged for animals self-administering MDMA; facilitation of MDMA self-administration was inversely related to SERT function. HOM animals, without exception, reached acquisition criterion significantly faster than the HET animals; HET animals then showed higher acquisition rates compared to the WT animals. In contrast, there were no differences between the genotypes when animals self-administered heroin. To investigate the driving force behind facilitated MDMA self-administration in animals with reduced SERT function locomotor activity and conditioned taste aversion experiments were undertaken. In contrast to the drug self-administration experiments,MDMA induced hyperactivity was positively related to SERT function. Thus, it was significantly reduced in HOM and HET animals compared to the WT. Again, heroin treatment did not produce differences in locomotion between the genotypes. MDMA induced conditioned taste aversion revealed only a main effect of dose with robust conditioned taste aversion for both drug doses, although a trend indicated that HOM animals may have heightened sensitivity to MDMA. However, heroin treatment failed to produce a conditioned taste aversion effect in any of the groups regardless of dose. Beyond the aforementioned behavioural experiments striatal brain tissue from the animals that had previously self-administered MDMA or heroin was analysed via quantitative reverse transcription polymerase chain reaction; five targets were evaluated to quantify drug induced changes in brain derived neurotrophic factor gene expression (BDNF). Several BDNF isoforms (total BDNF, BDNF III and BDNF IV) were significantly increased in animals that had self-administered MDMA; this effect was true across HOM, HET and WT subjects. Comparatively, animals that had self-administered heroin did not show a difference in BDNF expression compared to untreated control animals.  This suite of experiments provides insight into the influence of a compromised serotonergic system on the development of drug addiction. That is, while reduced SERT function does not appear to augment the addictive properties of drugs like heroin there is reason to suspect that it does confer additional susceptibility to developing addiction to drugs like MDMA, highlighting the hypothesis that different classes of addictive substances act through different neurobiological pathways.</p>


2021 ◽  
Vol 2 ◽  
Author(s):  
Lysanne Snijders ◽  
Nina M. Thierij ◽  
Rob Appleby ◽  
Colleen C. St. Clair ◽  
Jorge Tobajas

Modern wildlife management has dual mandates to reduce human-wildlife conflict (HWC) for burgeoning populations of people while supporting conservation of biodiversity and the ecosystem functions it affords. These opposing goals can sometimes be achieved with non-lethal intervention tools that promote coexistence between people and wildlife. One such tool is conditioned taste aversion (CTA), the application of an evolutionary relevant learning paradigm in which an animal associates a transitory illness to the taste, odor or other characteristic of a particular food item, resulting in a long-term change in its perception of palatability. Despite extensive support for the power of CTA in laboratory studies, field studies have exhibited mixed results, which erodes manager confidence in using this tool. Here we review the literature on CTA in the context of wildlife conservation and management and discuss how success could be increased with more use of learning theory related to CTA, particularly selective association, stimulus salience, stimulus generalization, and extinction of behavior. We apply learning theory to the chronological stages of CTA application in the field and illustrate them by synthesizing and reviewing past applications of CTA in HWC situations. Specifically, we discuss (1) when CTA is suitable, (2) how aversion can be most effectively (and safely) established, (3) how generalization of aversion from treated to untreated food can be stimulated and (4) how extinction of aversion can be avoided. For each question, we offer specific implementation suggestions and methods for achieving them, which we summarize in a decision-support table that might be used by managers to guide their use of CTA across a range of contexts. Additionally, we highlight promising ideas that may further improve the effectiveness of CTA field applications in the future. With this review, we aspire to demonstrate the diverse past applications of CTA as a non-lethal tool in wildlife management and conservation and facilitate greater application and efficacy in the future.


2021 ◽  
Vol 740 ◽  
pp. 135466
Author(s):  
Jean-Pascal Morin ◽  
Emmanuel Rodríguez-Nava ◽  
Víctor Manuel Torres-García ◽  
Omar Alejandro Contreras-Vázquez ◽  
César Armando Castellanos-Pérez ◽  
...  

2021 ◽  
Vol 100 (1) ◽  
pp. 372-376
Author(s):  
Fuminori Kawabata ◽  
Yuta Yoshida ◽  
Yuki Inoue ◽  
Yuko Kawabata ◽  
Shotaro Nishimura ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
pp. 259
Author(s):  
Hiroki Toyoda ◽  
Ayano Katagiri ◽  
Takafumi Kato ◽  
Hajime Sato

The pesticide rotenone inhibits mitochondrial complex I and is thought to cause neurological disorders such as Parkinson’s disease and cognitive disorders. However, little is known about the effects of rotenone on conditioned taste aversion memory. In the present study, we investigated whether intranasal administration of rotenone affects conditioned taste aversion memory in mice. We also examined how the intranasal administration of rotenone modulates synaptic transmission and plasticity in layer V pyramidal neurons of the mouse insular cortex that is critical for conditioned taste aversion memory. We found that the intranasal administration of rotenone impaired conditioned taste aversion memory to bitter taste. Regarding its cellular mechanisms, long-term depression (LTD) but not long-term potentiation (LTP) was impaired in rotenone-treated mice. Furthermore, spontaneous inhibitory synaptic currents and tonic GABA currents were decreased in layer V pyramidal neurons of rotenone-treated mice compared to the control mice. The impaired LTD observed in pyramidal neurons of rotenone-treated mice was restored by a GABAA receptor agonist muscimol. These results suggest that intranasal administration of rotenone decreases GABAergic synaptic transmission in layer V pyramidal neurons of the mouse insular cortex, the result of which leads to impairment of LTD and conditioned taste aversion memory.


2020 ◽  
pp. jeb.238055
Author(s):  
Ayaka Itoh ◽  
Yoshimasa Komatsuzaki ◽  
Ken Lukowiak ◽  
Minoru Saito

We examined the effects of epicatechin (Epi), a flavonoid abundant in green tea and cocoa, on long-term memory (LTM) formed following conditioned taste aversion (CTA) training in Lymnaea. In CTA training, the snails learn to avoid a food that initially they liked (i.e., sucrose). Twenty-four hours after CTA training, 67% of the trained snails showed a significant decrease in the feeding behavior elicited by sucrose. Placing snails in the Epi solution in CTA training did not alter the percentage of snails exhibiting LTM, but it significantly increased LTM persistence. We also examined changes following Epi exposure in spontaneous activity of the cerebral giant cells (CGCs) that modulate feeding behavior and are necessary for CTA-LTM. Our data suggested that Epi causes a decrease in CGC activity and increases LTM persistence possibly via GABAergic mechanism.


Sign in / Sign up

Export Citation Format

Share Document