scholarly journals Distribution of Ipsilateral and Contralateral Glutamatergic Synaptic Inputs to Phrenic Motor Neurons

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Sabhya Rana ◽  
Wen‐Zhi Zhan ◽  
Gary C. Sieck ◽  
Carlos B. Mantilla
Author(s):  
Raphael Rodrigues Perim ◽  
Michael D. Sunshine ◽  
Joseph F. Welch ◽  
Juliet Santiago ◽  
Ashley Holland ◽  
...  

Plasticity is a hallmark of the respiratory neural control system. Phrenic long-term facilitation (pLTF) is one form of respiratory plasticity characterized by persistent increases in phrenic nerve activity following acute intermittent hypoxia (AIH). Although there is evidence that key steps in the cellular pathway giving rise to pLTF are localized within phrenic motor neurons (PMNs), the impact of AIH on the strength of breathing-related synaptic inputs to PMNs remains unclear. Further, the functional impact of AIH is enhanced by repeated/daily exposure to AIH (dAIH). Here, we explored the effects of AIH vs. 2 weeks of dAIH preconditioning on spontaneous and evoked responses recorded in anesthetized, paralyzed (with pancuronium bromide) and mechanically ventilated rats. Evoked phrenic potentials were elicited by respiratory cycle-triggered lateral funiculus stimulation at C2 delivered prior to- and 60 min post-AIH (or an equivalent time in controls). Charge-balanced biphasic pulses (100 µs/phase) of progressively increasing intensity (100 to 700 µA) were delivered during the inspiratory and expiratory phases of the respiratory cycle. Although robust pLTF (~60% from baseline) was observed after a single exposure to moderate AIH (3 x 5 min; 5 min intervals), there was no effect on evoked phrenic responses, contrary to our initial hypothesis. However, in rats preconditioned with dAIH, baseline phrenic nerve activity and evoked responses were increased, suggesting that repeated exposure to AIH enhances functional synaptic strength when assessed using this technique. The impact of daily AIH preconditioning on synaptic inputs to PMNs raises interesting questions that require further exploration.


2013 ◽  
Vol 591 (10) ◽  
pp. 2403-2418 ◽  
Author(s):  
Dario Farina ◽  
Francesco Negro ◽  
Ning Jiang

2015 ◽  
Vol 113 (1) ◽  
pp. 182-191 ◽  
Author(s):  
Juan A. Gallego ◽  
Jakob L. Dideriksen ◽  
Ales Holobar ◽  
Jaime Ibáñez ◽  
José L. Pons ◽  
...  

Tremor in essential tremor (ET) is generated by pathological oscillations at 4–12 Hz, likely originating at cerebello-thalamo-cortical pathways. However, the way in which tremor is represented in the output of the spinal cord circuitries is largely unknown because of the difficulties in identifying the behavior of individual motor units from tremulous muscles. By using novel methods for the decomposition of multichannel surface EMG, we provide a systematic analysis of the discharge properties of motor units in nine ET patients, with concurrent recordings of EEG activity. This analysis allowed us to infer the contribution of common synaptic inputs to motor neurons in ET. Motor unit short-term synchronization was significantly greater in ET patients than in healthy subjects. Furthermore, the strong association between the degree of synchronization and the peak in coherence between motor unit spike trains at the tremor frequency indicated that the high synchronization levels were generated mainly by common synaptic inputs specifically at the tremor frequency. The coherence between EEG and motor unit spike trains demonstrated the presence of common cortical input to the motor neurons at the tremor frequency. Nonetheless, the strength of this input was uncorrelated to the net common synaptic input at the tremor frequency, suggesting a contribution of spinal afferents or secondary supraspinal pathways in projecting common input at the tremor frequency. These results provide the first systematic analysis of the neural drive to the muscle in ET and elucidate some of its characteristics that determine pathological tremulous muscle activity.


1999 ◽  
Vol 81 (4) ◽  
pp. 1730-1740 ◽  
Author(s):  
Maria Ullström ◽  
David Parker ◽  
Erik Svensson ◽  
Sten Grillner

Neuropeptide-mediated facilitation and inhibition of sensory inputs and spinal cord reflexes in the lamprey. The effects of neuromodulators present in the dorsal horn [tachykinins, neuropeptide Y (NPY), bombesin, and GABAB agonists] were studied on reflex responses evoked by cutaneous stimulation in the lamprey. Reflex responses were elicited in an isolated spinal cord preparation by electrical stimulation of the attached tail fin. To be able to separate modulator-induced effects at the sensory level from that at the motor or premotor level, the spinal cord was separated into three pools with Vaseline barriers. The caudal pool contained the tail fin. Neuromodulators were added to this pool to modulate sensory inputs evoked by tail fin stimulation. The middle pool contained high divalent cation or low calcium Ringer to block polysynaptic transmission and thus limit the input to the rostral pool to that from ascending axons that project through the middle pool. Ascending inputs and reflex responses were monitored by making intracellular recordings from motor neurons and extracellular recordings from ventral roots in the rostral pool. The tachykinin neuropeptide substance P, which has previously been shown to potentiate sensory input at the cellular and synaptic levels, facilitated tail fin-evoked synaptic inputs to neurons in the rostral pool and concentration dependently facilitated rostral ventral root activity. Substance P also facilitated the modulatory effects of tail fin stimulation on ongoing locomotor activity in the rostral pool. In contrast, NPY and the GABAB receptor agonist baclofen, both of which have presynaptic inhibitory effects on sensory afferents, reduced the strength of ascending inputs and rostral ventral root responses. We also examined the effects of the neuropeptide bombesin, which is present in sensory axons, at the cellular, synaptic, and reflex levels. As with substance P, bombesin increased tail fin stimulation-evoked inputs and ventral root responses in the rostral pool. These effects were associated with the increased excitability of slowly adapting mechanosensory neurons and the potentiation of glutamatergic synaptic inputs to spinobulbar neurons. These results show the possible behavioral relevance of neuropeptide-mediated modulation of sensory inputs at the cellular and synaptic levels. Given that the types and locations of neuropeptides in the dorsal spinal cord of the lamprey show strong homologies to that of higher vertebrates, these results are presumably relevant to other vertebrate systems.


2007 ◽  
Vol 97 (1) ◽  
pp. 550-556 ◽  
Author(s):  
Tara L. McIsaac ◽  
Andrew J. Fuglevand

An interesting feature of the muscular organization of the human hand is that the main flexors and extensors of the fingers are compartmentalized and give rise to multiple parallel tendons that insert onto all the fingers. Previous studies of motor-unit synchrony in extensor digitorum and flexor digitorum profundus indicated that synaptic input to motor neurons supplying these multitendoned muscles is not uniformly distributed across the entire pool of motor neurons but instead appears to be partially segregated to supply subsets of motor neurons that innervate different muscular compartments. Little is known, however, about the organization of the synaptic inputs to the motor neurons supplying another multitendoned finger muscle, the flexor digitorum superficialis (FDS). Therefore in this study, we estimated the extent of divergence of last-order inputs to FDS motor neurons by measuring the degree of short-term synchrony among motor units within and across compartments of FDS. The degree of synchrony for motor-unit pairs within the same digit compartment was nearly twofold that of pairs of motor units in adjacent compartments and more than fourfold that of pairs in nonadjacent compartments. Therefore like other multitendoned muscles of the hand, last-order synaptic inputs to motor neurons supplying the FDS appear to primarily supply subsets of motor neurons innervating specific finger compartments. Such an organization presumably enables differential activation of separate compartments to facilitate independent movements of the fingers.


2008 ◽  
Vol 100 (3) ◽  
pp. 1354-1371 ◽  
Author(s):  
Paul S. García ◽  
Terrence M. Wright ◽  
Ian R. Cunningham ◽  
Ronald L. Calabrese

Previously we presented a quantitative description of the spatiotemporal pattern of inhibitory synaptic input from the heartbeat central pattern generator (CPG) to segmental motor neurons that drive heartbeat in the medicinal leech and the resultant coordination of CPG interneurons and motor neurons. To begin elucidating the mechanisms of coordination, we explore intersegmental and side-to-side coordination in an ensemble model of all heart motor neurons and their known synaptic inputs and electrical coupling. Model motor neuron intrinsic properties were kept simple, enabling us to determine the extent to which input and electrical coupling acting together can account for observed coordination in the living system in the absence of a substantive contribution from the motor neurons themselves. The living system produces an asymmetric motor pattern: motor neurons on one side fire nearly in synchrony (synchronous), whereas on the other they fire in a rear-to-front progression (peristaltic). The model reproduces the general trends of intersegmental and side-to-side phase relations among motor neurons, but the match with the living system is not quantitatively accurate. Thus realistic (experimentally determined) inputs do not produce similarly realistic output in our model, suggesting that motor neuron intrinsic properties may contribute to their coordination. By varying parameters that determine electrical coupling, conduction delays, intraburst synaptic plasticity, and motor neuron excitability, we show that the most important determinant of intersegmental and side-to-side phase relations in the model was the spatiotemporal pattern of synaptic inputs, although phasing was influenced significantly by electrical coupling.


2015 ◽  
Vol 114 (2) ◽  
pp. 1090-1101 ◽  
Author(s):  
Philipp Rosenbaum ◽  
Josef Schmitz ◽  
Joachim Schmidt ◽  
Ansgar Büschges

Animals modify their behavior constantly to perform adequately in their environment. In terrestrial locomotion many forms of adaptation exist. Two tasks are changes of walking direction and walking speed. We investigated these two changes in motor output in the stick insect Cuniculina impigra to see how they are brought about at the level of leg motor neurons. We used a semi-intact preparation in which we can record intracellularly from leg motor neurons during walking. In this single-leg preparation the middle leg of the animal steps in a vertical plane on a treadwheel. Stimulation of either abdomen or head reliably elicits fictive forward or backward motor activity, respectively, in the fixed and otherwise deafferented thorax-coxa joint. With a change of walking direction only thorax-coxa-joint motor neurons protractor and retractor changed their activity. The protractor switched from swing activity during forward to stance activity during backward walking, and the retractor from stance to swing. This phase switch was due to corresponding change of phasic synaptic inputs from inhibitory to excitatory and vice versa at specific phases of the step cycle. In addition to phasic synaptic input a tonic depolarization of the motor neurons was present. Analysis of changes in stepping velocity during stance showed only a significant correlation to flexor motor neuron activity, but not to that of retractor and depressor motor neurons during forward walking. These results show that different tasks in the stick insect walking system are generated by altering synaptic inputs to specific leg joint motor neurons only.


1979 ◽  
Vol 42 (4) ◽  
pp. 1108-1123 ◽  
Author(s):  
M. Burrows

1. Graded synaptic interactions are revealed between pairs of nonspiking, local interneurons in the metathroracic ganglion of the locust. These interneurons drive motor neurons innervating muscles of a hindleg. 2. All the interactions found between the interneurons are inhibitory and one way. Synaptic transmission is effected by the graded release of chemical transmitter. Some of the connections are apparently direct. One local interneuron can, therefore, exert a graded control over the membrane potential of another local interneuron. 3. There are inhibitory connections between local interneurons that excite the same motor neuron, between local interneurons that excite antagonistic motor neurons, and between local interneurons that excite motor neurons to muscles moving different joints of a hindleg. 4. Other pairs of interneurons, which are not connected, may be driven by common synaptic inputs. Their outputs add together at the level of the motor neurons to produce effects that are greater than the sum of their individual effects. 5. It is proposed that graded interactions between these local interneurons are an essential element in the generation of motor patterns.


Sign in / Sign up

Export Citation Format

Share Document