scholarly journals Influence of common synaptic input to motor neurons on the neural drive to muscle in essential tremor

2015 ◽  
Vol 113 (1) ◽  
pp. 182-191 ◽  
Author(s):  
Juan A. Gallego ◽  
Jakob L. Dideriksen ◽  
Ales Holobar ◽  
Jaime Ibáñez ◽  
José L. Pons ◽  
...  

Tremor in essential tremor (ET) is generated by pathological oscillations at 4–12 Hz, likely originating at cerebello-thalamo-cortical pathways. However, the way in which tremor is represented in the output of the spinal cord circuitries is largely unknown because of the difficulties in identifying the behavior of individual motor units from tremulous muscles. By using novel methods for the decomposition of multichannel surface EMG, we provide a systematic analysis of the discharge properties of motor units in nine ET patients, with concurrent recordings of EEG activity. This analysis allowed us to infer the contribution of common synaptic inputs to motor neurons in ET. Motor unit short-term synchronization was significantly greater in ET patients than in healthy subjects. Furthermore, the strong association between the degree of synchronization and the peak in coherence between motor unit spike trains at the tremor frequency indicated that the high synchronization levels were generated mainly by common synaptic inputs specifically at the tremor frequency. The coherence between EEG and motor unit spike trains demonstrated the presence of common cortical input to the motor neurons at the tremor frequency. Nonetheless, the strength of this input was uncorrelated to the net common synaptic input at the tremor frequency, suggesting a contribution of spinal afferents or secondary supraspinal pathways in projecting common input at the tremor frequency. These results provide the first systematic analysis of the neural drive to the muscle in ET and elucidate some of its characteristics that determine pathological tremulous muscle activity.

2007 ◽  
Vol 97 (1) ◽  
pp. 550-556 ◽  
Author(s):  
Tara L. McIsaac ◽  
Andrew J. Fuglevand

An interesting feature of the muscular organization of the human hand is that the main flexors and extensors of the fingers are compartmentalized and give rise to multiple parallel tendons that insert onto all the fingers. Previous studies of motor-unit synchrony in extensor digitorum and flexor digitorum profundus indicated that synaptic input to motor neurons supplying these multitendoned muscles is not uniformly distributed across the entire pool of motor neurons but instead appears to be partially segregated to supply subsets of motor neurons that innervate different muscular compartments. Little is known, however, about the organization of the synaptic inputs to the motor neurons supplying another multitendoned finger muscle, the flexor digitorum superficialis (FDS). Therefore in this study, we estimated the extent of divergence of last-order inputs to FDS motor neurons by measuring the degree of short-term synchrony among motor units within and across compartments of FDS. The degree of synchrony for motor-unit pairs within the same digit compartment was nearly twofold that of pairs of motor units in adjacent compartments and more than fourfold that of pairs in nonadjacent compartments. Therefore like other multitendoned muscles of the hand, last-order synaptic inputs to motor neurons supplying the FDS appear to primarily supply subsets of motor neurons innervating specific finger compartments. Such an organization presumably enables differential activation of separate compartments to facilitate independent movements of the fingers.


2012 ◽  
Vol 107 (3) ◽  
pp. 958-965 ◽  
Author(s):  
Dario Farina ◽  
Francesco Negro ◽  
Leonardo Gizzi ◽  
Deborah Falla

We investigated the influence of nociceptive stimulation on the accuracy of task execution and motor unit spike trains during low-force isometric contractions. Muscle pain was induced by infusion of hypertonic saline into the abductor digiti minimi muscle of 11 healthy men. Intramuscular EMG signals were recorded from the same muscle during four isometric contractions of 60-s duration at 10% of the maximal force [maximal voluntary contraction (MVC)] performed before injection (baseline), after injection of isotonic (control) or hypertonic saline (pain), and 15 min after pain was no longer reported. Each contraction was preceded by three 3-s ramp contractions from 0% to 10% MVC. The low-frequency oscillations of motor unit spike trains were analyzed by the first principal component of the low-pass filtered spike trains [first common component (FCC)], which represents the effective neural drive to the muscle. Pain decreased the accuracy of task performance [coefficient of variation (CoV) for force: baseline, 2.8 ± 1.8%, pain, 3.9 ± 1.8%; P < 0.05] and reduced motor unit discharge rates [11.6 ± 2.3 pulses per second (pps) vs. 10.7 ± 1.7 pps; P < 0.05]. Motor unit recruitment thresholds (2.2 ± 1.2% MVC vs. 2.4 ± 1.6% MVC), interspike interval variability (18.4 ± 4.9% vs. 19.1 ± 5.4%), strength of motor unit short-term synchronization [common input strength (CIS) 1.02 ± 0.44 vs. 0.83 ± 0.22], and strength of common drive (0.47 ± 0.08 vs. 0.47 ± 0.06) did not change across conditions. The FCC signal was correlated with force ( R = 0.45 ± 0.06), and the CoV for FCC increased in the painful condition (5.69 ± 1.29% vs. 7.83 ± 2.61%; P < 0.05). These results indicate that nociceptive stimulation increased the low-frequency variability in synaptic input to motoneurons.


2021 ◽  
Author(s):  
François Hug ◽  
Simon Avrillon ◽  
Alessandro Del Vecchio ◽  
Andrea Casolo ◽  
Jaime Ibanez ◽  
...  

AbstractThere is a growing interest in decomposing high-density surface electromyography (HDsEMG) into motor unit spike trains to improve knowledge on the neural control of muscle contraction. However, the reliability of decomposition approaches is sometimes questioned, especially because they require manual editing of the outputs. We aimed to assess the inter-operator reliability of the identification of motor unit spike trains. Eight operators with varying experience in HDsEMG decomposition were provided with the same data extracted using the convolutive kernel compensation method. They were asked to manually edit them following established procedures. Data included signals from three lower leg muscles and different contraction intensities. After manual analysis, 126 ± 5 motor units were retained (range across operators: 119-134). A total of 3380 rate of agreement values were calculated (28 pairwise comparisons × 11 contractions/muscles × 4-28 motor units). The median rate of agreement value was 99.6%. Inter-operator reliability was excellent for both mean discharge rate and time at recruitment (intraclass correlation coefficient > 0.99). These results show that when provided with the same decomposed data and the same basic instructions, operators converge toward almost identical results. Our data have been made available so that they can be used for training new operators.


2019 ◽  
Vol 122 (5) ◽  
pp. 2043-2053
Author(s):  
Gonthicha Puttaraksa ◽  
Silvia Muceli ◽  
Juan Álvaro Gallego ◽  
Ales Holobar ◽  
Steven K. Charles ◽  
...  

Pathological tremor is an oscillation of body parts at 3–10 Hz, determined by the output of spinal motor neurons (MNs), which receive synaptic inputs from supraspinal centers and muscle afferents. The behavior of spinal MNs during tremor is not well understood, especially in relation to the activation of the multiple muscles involved. Recent studies on patients with essential tremor have shown that antagonist MN pools receive shared input at the tremor frequency. In this study, we investigated the synaptic inputs related to tremor and voluntary movement, and their coordination across antagonist muscles. We analyzed the spike trains of motor units (MUs) identified from high-density surface electromyography from the forearm extensor and flexor muscles in 15 patients with essential tremor during postural tremor. The shared synaptic input was quantified by coherence and phase difference analysis of the spike trains. All pairs of spike trains in each muscle showed coherence peaks at the voluntary drive frequency (1–3 Hz, 0.2 ± 0.2, mean ± SD) and tremor frequency (3–10 Hz, 0.6 ± 0.3) and were synchronized with small phase differences (3.3 ± 25.2° and 3.9 ± 22.0° for the voluntary drive and tremor frequencies, respectively). The coherence between MN spike trains of antagonist muscle groups at the tremor frequency was significantly smaller than intramuscular coherence. We predominantly observed in-phase activation of MUs between agonist/antagonist muscles at the voluntary frequency band (0.6 ± 48.8°) and out-of-phase activation at the tremor frequency band (126.9 ± 75.6°). Thus MNs innervating agonist/antagonist muscles concurrently receive synaptic inputs with different phase shifts in the voluntary and tremor frequency bands. NEW & NOTEWORTHY Although the mechanical characteristics of tremor have been widely studied, the activation of the affected muscles is still poorly understood. We analyzed the behavior of motor units of pairs of antagonistic wrist muscle groups in patients with essential tremor and studied their activity at voluntary movement- and tremor-related frequencies. We found that the phase relation between inputs to antagonistic muscles is different at the voluntary and tremor frequency bands.


Author(s):  
Felipe Colla Pinheiro ◽  
Leonardo Abdala Elias ◽  
Diana R. Toledo ◽  
André F. Kohn ◽  
Felipe F. Lima

Decomposition of intramuscular electromyogram (iEMG) into its constituent motor unit spike trains is a useful tool for understanding the neurophysiological control of muscle force. Some experimental results have shown that the performance in a force-matching motor task is influenced by the gain of the visual feedback provided to the subject. In this project, the propose was to decompose iEMG signals from the Soleus muscle recorded in a force-matching task (plantarflexion contractions with different intensities). The motor unit spike trains were analyzed in six different conditions of visual feedback. From the results found, the visual feedback gain seems not to influence the discharge properties of MUs recruited in a force-matching task. Force intensity only influenced the number of recruited MUs and the MU FR, which is expected from the recruitment and rate coding mechanisms of force control.


2017 ◽  
Vol 117 (4) ◽  
pp. 1749-1760 ◽  
Author(s):  
Javier Rodriguez-Falces ◽  
Francesco Negro ◽  
Dario Farina

We investigated whether correlation measures derived from pairs of motor unit (MU) spike trains are reliable indicators of the degree of common synaptic input to motor neurons. Several 50-s isometric contractions of the biceps brachii muscle were performed at different target forces ranging from 10 to 30% of the maximal voluntary contraction relying on force feedback. Forty-eight pairs of MUs were examined at various force levels. Motor unit synchrony was assessed by cross-correlation analysis using three indexes: the output correlation as the peak of the cross-histogram (ρ) and the number of synchronous spikes per second (CIS) and per trigger (E). Individual analysis of MU pairs revealed that ρ, CIS, and E were most often positively associated with discharge rate (87, 85, and 76% of the MU pairs, respectively) and negatively with interspike interval variability (69, 65, and 62% of the MU pairs, respectively). Moreover, the behavior of synchronization indexes with discharge rate (and interspike interval variability) varied greatly among the MU pairs. These results were consistent with theoretical predictions, which showed that the output correlation between pairs of spike trains depends on the statistics of the input current and motor neuron intrinsic properties that differ for different motor neuron pairs. In conclusion, the synchronization between MU firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains. NEW & NOTEWORTHY The strength of correlation between output spike trains is only poorly associated with the degree of common input to the population of motor neurons. The synchronization between motor unit firing trains is necessarily caused by the (functional) common input to motor neurons, but it is not possible to infer the degree of shared common input to a pair of motor neurons on the basis of correlation measures of their output spike trains.


1993 ◽  
Vol 70 (5) ◽  
pp. 1827-1840 ◽  
Author(s):  
C. J. Heckman ◽  
M. D. Binder

1. The effects of four different synaptic input systems on the recruitment order within a mammalian motoneuron pool were investigated using computer simulations. The synaptic inputs and motor unit properties in the model were based as closely as possible on the available experimental data for the cat medial gastrocnemius pool and muscle. Monte Carlo techniques were employed to add random variance to the motor unit thresholds and forces and to sample the resulting recruitment orders. 2. The effects of the synaptic inputs on recruitment order depended on how they modified the range of recruitment thresholds established by differences in the intrinsic current thresholds of the motoneurons. Application of a uniform synaptic input to the pool (i.e., distributed equally to all motoneurons) resulted in a recruitment sequence that was quite stable even with the addition of large amounts of random variance. With 50% added random variance, the recruitment reversals did not exceed 8%. 3. The simulated monosynaptic input from homonymous Ia afferent fibers generated a twofold expansion of the range of recruitment thresholds beyond that attributed to the differences in the intrinsic current thresholds. The Ia input generated a small reduction in the number of recruitment reversals due to random variance (6% reversals at 50% random variance). The simulated monosynaptic vestibulospinal input generated a twofold compression of the range of recruitment thresholds that exerted a modest increase in the number of recruitment reversals (12% reversals at 50% random variance). 4. In comparison with the modest effects of the two monosynaptic inputs, the simulated oligosynpatic rubrospinal excitatory input exerted a nine-fold compression in the recruitment threshold range that resulted in a recruitment sequence that was highly sensitive to random variance. With 50% added random variance, the sequence became nearly random (40% reversals). 5. Reciprocal Ia inhibition was simulated by a uniform distribution within the pool, but its effects on recruitment order were highly dependent on the distribution of the excitatory input. Reciprocal inhibition exerted only minor effects on recruitment order when combined with the Ia or vestibulospinal inputs. However, when the excitatory drive was supplied by the rubrospinal input, even small amounts of reciprocal inhibition were sufficient to completely reverse the normal recruitment sequence. 6. The simulated monosynaptic Ia input was highly effective in compensating for the disruptive effects of rubrospinal excitation on recruitment order. Even a small Ia bias combined with the rubrospinal excitation was sufficient to halve the effects of random variance and to restore the normal recruitment sequence in the presence of rather large amounts of reciprocal inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 55 ◽  
pp. 101637 ◽  
Author(s):  
Chen Chen ◽  
Yang Yu ◽  
Shihan Ma ◽  
Xinjun Sheng ◽  
Chuang Lin ◽  
...  

2016 ◽  
Vol 116 (2) ◽  
pp. 611-618 ◽  
Author(s):  
Jakob L. Dideriksen ◽  
Ales Holobar ◽  
Deborah Falla

Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle.


2011 ◽  
Vol 105 (1) ◽  
pp. 380-387 ◽  
Author(s):  
Christopher M. Laine ◽  
E. Fiona Bailey

The tongue plays a key role in various volitional and automatic functions such as swallowing, maintenance of airway patency, and speech. Precisely how hypoglossal motor neurons, which control the tongue, receive and process their often concurrent input drives is a subject of ongoing research. We investigated common synaptic input to the hypoglossal motor nucleus by measuring the coordination of spike timing, firing rate, and oscillatory activity across motor units recorded from unilateral (i.e., within a belly) or bilateral (i.e., across both bellies) locations within the genioglossus (GG), the primary protruder muscle of the tongue. Simultaneously recorded pairs of motor units were obtained from 14 healthy adult volunteers using tungsten microelectrodes inserted percutaneously into the GG while the subjects were engaged in volitional tongue protrusion or rest breathing. Bilateral motor unit pairs showed concurrent low frequency alterations in firing rate (common drive) with no significant difference between tasks. Unilateral motor unit pairs showed significantly stronger common drive in the protrusion task compared with rest breathing, as well as higher indices of synchronous spiking (short-term synchrony). Common oscillatory input was assessed using coherence analysis and was observed in all conditions for frequencies up to ∼5 Hz. Coherence at frequencies up to ∼10 Hz was strongest in motor unit pairs recorded from the same GG belly in tongue protrusion. Taken together, our results suggest that cortical drive increases motor unit coordination within but not across GG bellies, while input drive during rest breathing is distributed uniformly to both bellies of the muscle.


Sign in / Sign up

Export Citation Format

Share Document