scholarly journals Hypoxic Vasodilation in Human Skeletal Muscle: contributions of nitric oxide and vasodilating prostaglandins

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Rachel R Markwald ◽  
Brett S Kirby ◽  
Rick E Carlson ◽  
Wyatt F Voyles ◽  
Frank A Dinenno
Hypertension ◽  
2010 ◽  
Vol 56 (6) ◽  
pp. 1102-1108 ◽  
Author(s):  
Michael Nyberg ◽  
Stefan P. Mortensen ◽  
Pia Thaning ◽  
Bengt Saltin ◽  
Ylva Hellsten

2001 ◽  
Vol 55 (3) ◽  
pp. 187-197 ◽  
Author(s):  
Georg Gosztonyi ◽  
Ulrich Naschold ◽  
Zarko Grozdanovic ◽  
Gisela Stoltenburg-Didinger ◽  
Reinhart Gossrau

2009 ◽  
Vol 296 (4) ◽  
pp. R1140-R1148 ◽  
Author(s):  
Stefan P. Mortensen ◽  
José González-Alonso ◽  
Laurids T. Bune ◽  
Bengt Saltin ◽  
Henriette Pilegaard ◽  
...  

Plasma ATP is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study investigated: 1) the role of nitric oxide (NO), prostaglandins, and adenosine as mediators of ATP-induced limb vasodilation and 2) the expression and distribution of purinergic P2 receptors in human skeletal muscle. Systemic and leg hemodynamics were measured before and during 5–7 min of femoral intra-arterial infusion of ATP [0.45–2.45 μmol/min] in 19 healthy male subjects with and without coinfusion of NG-monomethyl-l-arginine (l-NMMA; NO formation inhibitor; 12.3 ± 0.3 (SE) mg/min), indomethacin (INDO; prostaglandin formation blocker; 613 ± 12 μg/min), and/or theophylline (adenosine receptor blocker; 400 ± 26 mg). During control conditions, ATP infusion increased leg blood flow (LBF) from baseline conditions by 1.82 ± 0.14 l/min. When ATP was coinfused with either l-NMMA, INDO, or l-NMMA + INDO combined, the increase in LBF was reduced by 14 ± 6, 15 ± 9, and 39 ± 8%, respectively (all P < 0.05), and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP-induced leg hyperemia or systemic variables. Real-time PCR analysis of the mRNA content from the vastus lateralis muscle of eight subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma. Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP-induced vasodilation in human skeletal muscle. The expression and localization of the nucleotide selective P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP-induced vasodilation in skeletal muscle.


2012 ◽  
Vol 113 (11) ◽  
pp. 1690-1698 ◽  
Author(s):  
Stephen J. Ives ◽  
Robert H. I. Andtbacka ◽  
Sun Hyung Kwon ◽  
Yan-Ting Shiu ◽  
Ting Ruan ◽  
...  

Increased local temperature exerts a sympatholytic effect on human skeletal muscle feed arteries. We hypothesized that this attenuated α1-adrenergic receptor responsiveness may be due to a temperature-induced increase in nitric oxide (NO) bioavailability, thereby reducing the impact of the α1-adrenergic receptor agonist phenylephrine (PE). Thirteen human skeletal muscle feed arteries were harvested, and wire myography was used to generate PE concentration-response curves at 37°C and 39°C, with and without the NO synthase (NOS) inhibitor NG-monomethyl-l-arginine (l-NMMA). A subset of arteries ( n = 4) were exposed to 37°C or 39°C, and the protein content of endothelial NOS (eNOS) and α1-adrenergic receptors was determined by Western blot analysis. Additionally, cultured bovine endothelial cells were exposed to static or shear stress conditions at 37°C and 39°C and assayed for eNOS activation (phosphorylation at Ser1177), eNOS expression, and NO metabolites [nitrate + nitrite (NOx)]. Maximal PE-induced vasocontraction (PEmax) was lower at 39°C than at 37°C [39 ± 10 vs. 84 ± 30% maximal response to 100 mM KCl (KClmax)]. NO blockade restored vasocontraction at 39°C to that achieved at 37°C (80 ± 26% KClmax). Western blot analysis of the feed arteries revealed that heating increased eNOS protein, but not α1-adrenergic receptors. Heating of bovine endothelial cells resulted in greater shear stress-induced eNOS activation and NOx production. Together, these data reveal for the first time that, in human skeletal muscle feed arteries, NO blockade can restore the heat-attenuated α1-adrenergic receptor-mediated vasocontraction and implicate endothelium-derived NO bioavailability as a major contributor to heat-induced sympatholysis. Consequently, these findings highlight the important role of vasodilators in modulating the vascular response to vasoconstrictors.


2002 ◽  
Vol 540 (1) ◽  
pp. 377-386 ◽  
Author(s):  
Bahman Chavoshan ◽  
Mikael Sander ◽  
Troy E. Sybert ◽  
Jim Hansen ◽  
Ronald G. Victor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document