purinergic receptors
Recently Published Documents


TOTAL DOCUMENTS

642
(FIVE YEARS 85)

H-INDEX

61
(FIVE YEARS 7)

Author(s):  
Xian-Ming Wu ◽  
Ning Zhang ◽  
Jiang-Shan Li ◽  
Zhi-Hong Yang ◽  
Xiao-Lou Huang ◽  
...  

Abstract Atherosclerosis is the main pathological basis of cardiovascular disease and involves damage to vascular endothelial cells (ECs) that results in endothelial dysfunction (ED). The vascular endothelium is the key to maintaining blood vessel health and homeostasis. ED is a complex pathological process involving inflammation, shear stress, vascular tone, adhesion of leukocytes to ECs, and platelet aggregation. The activation of P2X4, P2X7, and P2Y2 receptors regulates vascular tone in response to shear stress, while activation of the A2A, P2X4, P2X7, P2Y1, P2Y2, P2Y6, and P2Y12 receptors promotes the secretion of inflammatory cytokines. Finally, P2X1, P2Y1, and P2Y12 receptor activation regulates platelet activity. These purinergic receptors mediate ED and participate in atherosclerosis. In short, P2X4, P2X7, P2Y1, and P2Y12 receptors are potential therapeutic targets for atherosclerosis.


Abstract Podocyte calcium (Ca2+) signaling plays important roles in the (patho)physiology of the glomerular filtration barrier. Overactivation of podocyte transient receptor potential canonical (TRPC) channels including TRPC6 and purinergic signaling via P2 receptors that are known mechanosensors can increase podocyte intracellular Ca2+ levels ([Ca2+]i) and cause cell injury, proteinuria and glomerular disease including in diabetes. However, important mechanistic details of the trigger and activation of these pathways in vivo in the intact glomerular environment are lacking. Here we show direct visual evidence that podocytes can sense mechanical overload (increased glomerular capillary pressure) and metabolic alterations (increased plasma glucose) via TRPC6 and purinergic receptors including P2Y2. Multiphoton microscopy of podocyte [Ca2+]i was performed in vivo using wild-type and TRPC6 or P2Y2 knockout (KO) mice expressing the calcium reporter GCaMP3/5 only in podocytes and in vitro using freshly dissected microperfused glomeruli. Single-nephron intra-glomerular capillary pressure elevations induced by obstructing the efferent arteriole lumen with laser-induced microthrombus in vivo and by a micropipette in vitro triggered >2-fold increases in podocyte [Ca2+]i. These responses were blocked in TRPC6 and P2Y2 KO mice. Acute elevations of plasma glucose caused >4-fold increases in podocyte [Ca2+]i that were abolished by pharmacological inhibition of TRPC6 or P2 receptors using SAR7334 or suramin treatment, respectively. This study established the role of Ca2+ signaling via TRPC6 channels and P2 receptors in mechanical and metabolic sensing of podocytes in vivo, which are promising therapeutic targets in conditions with high intra-glomerular capillary pressure and plasma glucose, such as diabetic and hypertensive nephropathy.


2021 ◽  
Vol 22 (23) ◽  
pp. 12936
Author(s):  
Francisco Llavero Bernal ◽  
Miriam Luque Montoro ◽  
Alazne Arrazola Sastre ◽  
Hadriano M. Lacerda ◽  
José Luis Zugaza

ATP, one of the signaling molecules most commonly secreted in the nervous system and capable of stimulating multiple pathways, binds to the ionotropic purinergic receptors, in particular, the P2X7 receptor (P2X7R) and stimulates neuronal cell death. Given this effect of purinergic receptors on the viability of dopaminergic neurons model cells and that Ras GTPases control Erk1/2-regulated mitogen-activated cell proliferation and survival, we have investigated the role of the small GTPases of the Ras superfamily, together with their regulatory and effector molecules as the potential molecular intermediates in the P2X7R-regulated cell death of SN4741 dopaminergic neurons model cells. Here, we demonstrate that the neuronal response to purinergic stimulation involves the Calmodulin/RasGRF1 activation of the small GTPase Ras and Erk1/2. We also demonstrate that tyrosine phosphatase PTPRβ and other tyrosine phosphatases regulate the small GTPase activation pathway and neuronal viability. Our work expands the knowledge on the intracellular responses of dopaminergic cells by identifying new participating molecules and signaling pathways. In this sense, the study of the molecular circuitry of these neurons is key to understanding the functional effects of ATP, as well as considering the importance of these cells in Parkinson’s Disease.


Author(s):  
Manuel F. Muñoz ◽  
Theanne N. Griffith ◽  
Jorge E. Contreras

AbstractPain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.


Author(s):  
Fernanda Cardoso Teixeira ◽  
Mayara Sandrielly Pereira Soares ◽  
Eduardo Bierhaus Blödorn ◽  
William Borges Domingues ◽  
Karine Paula Reichert ◽  
...  

2021 ◽  
Author(s):  
Ting Wang ◽  
Jianmin Li ◽  
Hui Li ◽  
Xin Zhong ◽  
Luya Wang ◽  
...  

Abstract Background Diabetic cardiomyopathy (DCM), the main complication of diabetes mellitus, presents as cardiac dysfunction by ventricular remodeling. In addition, the inhibition of P2X7 purinergic receptors (P2X7R) alleviates cardiac fibrosis and apoptosis in Type 1 diatebes. However, whether exercise training improves cardiac remodeling by regulating P2X7R remains unknown. Methods Db/db mice spontaneously induced with type 2 diabetes and high-fat diet (HFD) and mice with streptozotin (STZ)-induced type 2 diabetes mice were treated by 12-week treadmill training. Cardiac functions were observed by two-dimensional echocardiography. Hematoxylin-eosin staining, Sirius red staining and transmission electron microscopy were respectively used to detect cardiac morphology, fibrosis and mitochondria. In addidion, real-time polymerase chain reaction and Western Blot were used to detect mRNA and protein levels. Results Studying the hearts of db/db mice and STZ-induced mice, we found that collagen deposition and the number of disordered cells signiଁcantly increased compared with the control group. However, exercise markedly reversed these changes, and the same tendency was observed in the expression of MMP9, COL-I, and TGF-β, which indicated cardiac fibrotic and hypertrophic markers, including ANP and MyHC expression. In addition, the increased Caspase-3 level and the ratio of Bax/Bcl2 were reduced by exercise training, and similar results were observed in the TUNEL test. Notably, the expression of P2X7R was greatly upregulated in the hearts of db/db mice and HFD+STZ-induced DM mice and downregulated by aerobic exercise. Moreover, we indicated that P2X7R knock out signiଁcantly reduced the collagen deposition and disordered cells in the DM group. Furthermore, the apoptosis levels and TUNEL analysis were greatly inhibited by exercise or in the P2X7R−/− group in DM. We found significant differences between the P2X7R−/−+DM+EX group and DM+EX group in myocardial tissue apoptosis and fibrosis, in which the former is significantly milder. Moreover, compared with the P2X7R−/−+DM group, the P2X7R−/−+DM+EX group represented a lower level of cardiac fibrosis. The expression levels of TGF-β at the protein level and TGF-β and ANP at the genetic level were evidently decreased in the P2X7R−/−+DM+EX group. Conclusion Aerobic exercise reversed cardiac remodeling in diabetic mice at least partly through inhibiting P2X7R expression in cardiomyocytes.


10.1085/ecc41 ◽  
2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Mariana Casas ◽  
Gonzalo Jorquera ◽  
Camilo Morales ◽  
Enrique Jaimovich

An important question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype-activating transcriptional changes in a process named excitation–transcription coupling. We have shown in adult muscle fibers that 20 Hz electrical stimulation (ES) activates a signaling cascade that starts with Cav1.1 activation, ATP release trough pannexin-1 channel, activation of purinergic receptors, and IP3-dependent Ca2+ signals inducing transcriptional changes related to muscle plasticity from fast to slow phenotype. Extracellular addition of 30 µM ATP mimics transcriptional changes induced by ES at 20 Hz. ATP release occurs in two peaks, the first around 15 s after ES and a second around 300 s after ES. In the present work, we used apyrase to hydrolyze ATP 60 s after ES, maintaining the first peak and eliminating the second peak. In this condition, transcriptional changes were abolished, indicating that the second peak is the one crucial to activate transcription. Additionally, we observed a small depolarization of fibers after ES. The addition of 30 to 100 µM external ATP also induced depolarization of muscle fibers. This depolarization was unable to activate contraction but was able to induce transcriptional changes induced by 20 Hz ES. These changes were completely inhibited by the IP3R blocker xestospongin B, suggesting that IP3-dependent events are triggered at these membrane depolarization values. Moreover, transcriptional changes induced by addition of 30 µM extracellular ATP was blocked by incubation of fibers with 25 µM Nifedipine. These results suggest that the second ATP peak observed after 20 Hz ES is responsible for transcriptional activation by inducing small depolarizations of fiber membranes that are also sensed by Cav1.1. Finally, we show evidence that downstream of purinergic receptors, PKC is activated, likely causing phosphorylation of ClC-1 chloride channels, possibly responsible for depolarization after 20 Hz.


Author(s):  
Djo Hasan ◽  
Atsuko Shono ◽  
Coenraad K. van Kalken ◽  
Peter J. van der Spek ◽  
Eric P. Krenning ◽  
...  

AbstractHyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009520
Author(s):  
Alireza Poshtkohi ◽  
John Wade ◽  
Liam McDaid ◽  
Junxiu Liu ◽  
Mark Dallas ◽  
...  

Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology.


2021 ◽  
Vol 22 (21) ◽  
pp. 11472
Author(s):  
Clémentine Dillard ◽  
Chloé Borde ◽  
Ammara Mohammad ◽  
Virginie Puchois ◽  
Laurent Jourdren ◽  
...  

The purine nucleotide adenosine triphosphate (ATP) is known for its fundamental role in cellular bioenergetics. However, in the last decades, different works have described emerging functions for ATP, such as that of a danger signaling molecule acting in the extracellular space on both tumor and stromal compartments. Beside its role in immune cell signaling, several studies have shown that high concentrations of extracellular ATP can directly or indirectly act on cancer cells. Accordingly, it has been reported that purinergic receptors are widely expressed in tumor cells. However, their expression pattern is often associated with contradictory cellular outcomes. In this work, we first investigated gene expression profiles through “RNA-Sequencing” (RNA Seq) technology in four colorectal cancer (CRC) cell lines (HT29, LS513, LS174T, HCT116). Our results demonstrate that CRC cells mostly express the A2B, P2X4, P2Y1, P2Y2 and P2Y11 purinergic receptors. Among these, the P2Y1 and P2Y2 coding genes are markedly overexpressed in all CRC cells compared to the HCEC-1CT normal-like colonic cells. We then explored the cellular outcomes induced by extracellular ATP and adenosine. Our results show that in terms of cell death induction extracellular ATP is consistently more active than adenosine against CRC, while neither compound affected normal-like colonic cell survival. Intriguingly, while for the P2Y2 receptor pharmacological inhibition completely abolished the rise in cytoplasmic Ca2+ observed after ATP exposure in all CRC cell lines, Ca2+ mobilization only impacted the cellular outcome for HT29. In contrast, non-selective phosphodiesterase inhibition completely abolished the effects of extracellular ATP on CRC cells, suggesting that cAMP and/or cGMP levels might determine cellular outcome. Altogether, our study provides novel insights into the characterization of purinergic signaling in CRC.


Sign in / Sign up

Export Citation Format

Share Document