scholarly journals Generation of CYP4A1 transgenic rats using the Sleeping Beauty transposon system

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Fan Fan ◽  
Howard Jacob ◽  
Aron Geurts ◽  
Sydney Murphy ◽  
Richard J. Roman
Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Fan Fan ◽  
Ying Ge ◽  
Sydney Murphy ◽  
Aron M Geurts ◽  
Howard Jacob ◽  
...  

We have reported that the production of 20-HETE is reduced in the renal vasculature of Dahl S rats and that myogenic and TGF responses of afferent arteries (Af-Art) are impaired in Dahl S rats. In this study we generated CYP4A1 transgenic rats in the Dahl S inbred strain background utilizing the enhanced Sleeping Beauty (SB100X) transposon system to determine if upregulation of 20-HETE production can restore vascular reactivity and oppose the development of renal injury. Fertilized eggs collected from female Dahl S rats were microinjected with a transposon vector harboring the rat CYP4A1 cDNA under the control of the ubiquitous CAG promoter along with SB100X transposase mRNA to produce transgenic founders. Heterozygous founders were backcrossed to Dahl S rats, transgene insertion sites were identified by Ligation Mediated PCR and sequencing, and the progeny were brother-sister mated to derive homozygous transgenic lines. The expression of CYP4A protein was significantly elevated and the production of 20-HETE was 3-fold higher in the renal outer medullary tissue of CYP4A1 transgenic (n=17) compared to Dahl S rats (n=17). 20-HETE production was 10-fold higher in renal microvessels of CYP4A1 transgenic animals than Dahl S rats. (0.2±0.3, n=22 versus 1.9±0.1 pmol/mg/min, n=14). The luminal diameter of the Af-Art decreased significantly from 15.9 ± 0.6 to 14.1 ± 0.5 μm in CYP4A1 transgenic rats (n=5) when the perfusion pressure was increased from 60 to 120 mmHg, whereas it remained unaltered in Dahl S rats (from 19.4 ± 2.3 to 20.6 ± 5.6 μm, n=22). These studies further support the view that a deficiency in the formation of 20-HETE in the renal microcirculation contributes to the marked susceptibility of Dahl S rats to develop of hypertension and diabetic induced renal injury, and the new CYP4A1 transposon transgenic rat model may be useful for determining the mechanisms involved.


2019 ◽  
Author(s):  
Maria Hernandez ◽  
Sergio Recalde ◽  
Laura Garcia-Garcia ◽  
Jaione Bezunartea ◽  
Csaba Miskey ◽  
...  

2021 ◽  
pp. canres.0356.2021
Author(s):  
Michiko Kodama ◽  
Hiroko Shimura ◽  
Jean C Tien ◽  
Justin Y Newberg ◽  
Takahiro Kodama ◽  
...  

2017 ◽  
Vol 9 ◽  
pp. 1-11 ◽  
Author(s):  
Laura Garcia-Garcia ◽  
Sergio Recalde ◽  
Maria Hernandez ◽  
Jaione Bezunartea ◽  
Juan Roberto Rodriguez-Madoz ◽  
...  

PLoS Currents ◽  
2011 ◽  
Vol 3 ◽  
pp. RRN1296 ◽  
Author(s):  
Sofia Muses ◽  
Jennifer E Morgan ◽  
Dominic J. Wells

Author(s):  
Weronika Sowińska ◽  
Mateusz Wawro ◽  
Aleksandra Solecka ◽  
Aneta Kasza

MCPIP2 is the least known member of the MCPIP family of proteins. Recently we have found that it is a new RNase involved in transcript turnover. However, the full spectrum of its cellular targets is still unidentified. To discover transcripts which are regulated by this protein we have employed Sleeping Beauty transposons. This tool allows for rapid generation of a stable transgenic cell line with inducible expression of the desired gene. In this study, we analysed how the Sleeping Beauty system itself influences expression of chosen genes, namely IL-6, Regnase-1 and VEGF. We found that the system alone may influence expression of IL-6. Our results indicate that Sleeping Beauty transposons should be used with caution in studies that are focused on changes in the transcript level.


Sign in / Sign up

Export Citation Format

Share Document