scholarly journals Uterine artery smooth muscle contractions are mediated by PKC and NO signaling mechanisms in diet‐induced obese pregnant rats (700.8)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Styliani Goulopoulou ◽  
Johanna Hannan ◽  
R. Clinton Webb
2006 ◽  
Vol 175 (4S) ◽  
pp. 63-63 ◽  
Author(s):  
Stephanie Oger ◽  
Delphine Behr-Roussel ◽  
Jacques Bernabe ◽  
Pierre Denys ◽  
Eva Camperat ◽  
...  

1992 ◽  
Vol 23 (2) ◽  
pp. 211-215 ◽  
Author(s):  
Shigeru Hishinuma ◽  
Ikuko Hongo ◽  
Masaatsu K. Uchida ◽  
Masanori Kurokawa

CHEST Journal ◽  
1992 ◽  
Vol 102 (4) ◽  
pp. 1251-1257 ◽  
Author(s):  
Kunihiko Iizuka ◽  
Kunio Dobashi ◽  
Shinobu Houjou ◽  
Hiromi Sakai ◽  
Kouichi Itoh ◽  
...  

2012 ◽  
Vol 38 (7) ◽  
pp. 1004-1010 ◽  
Author(s):  
Shoko Tsuji ◽  
Katsuhiko Yasuda ◽  
Genichiro Sumi ◽  
Hisayuu Cho ◽  
Tomoko Tsuzuki ◽  
...  

1991 ◽  
Vol 143 (6) ◽  
pp. 1416-1418 ◽  
Author(s):  
Izumi Honda ◽  
Hirotsugu Kohrogi ◽  
Tetsuro Yamaguchi ◽  
Masayuki Ando ◽  
Shukuro Araki

2008 ◽  
Vol 20 (9) ◽  
pp. 21
Author(s):  
L. A. Vodstrcil ◽  
J. Novak ◽  
M. Tare ◽  
M. E. Wlodek ◽  
L. J. Parry

During pregnancy, the uteroplacental circulation undergoes dramatic alterations to allow for the large increase in blood flow to the feto-placental unit. These alterations are achieved through several mechanisms including structural changes in the uterine artery wall and endothelium-dependent vasodilation. Small renal arteries of relaxin-deficient mice and rats have enhanced myogenic reactivity and decreased passive compliance, and are relatively vasoconstricted (Novak et al. 2001, 2006). To date, no study has identified relaxin receptors (Rxfp1) in arteries or investigated the effects of relaxin deficiency in pregnancy on uterine artery function. The aims of this current study were to: 1) localise Rxfp1 in the uterine arteries, 2) measure myogenic reactivity in small uterine arteries after relaxin treatment, and 3) test the hypothesis that blocking circulating relaxin in late pregnancy will increase uterine artery wall stiffness. We demonstrated that Rxfp1 is expressed in the uterine arteries of pregnant mice and rats. Brightfield immunohistochemistry and immunofluorescence using antibodies specific for rat Rxfp1, α-smooth muscle actin and CD31 localised Rxfp1 protein predominantly to the vascular smooth muscle in the uterine artery of pregnant rats. Administration of recombinant human H2 relaxin (4 ug/h) for 6 h or 5 days in intact and ovariectomised rats reduced myogenic reactivity of small uterine arteries in vitro. Pregnant rats were treated with a monoclonal antibody against circulating relaxin (MCA1) or control (MCAF) for 3 days (Days 17–19) and uterine arteries were mounted on a pressure myograph to assess passive mechanical wall properties. Neutralising circulating relaxin in late pregnancy resulted in a significant increase in uterine artery wall stiffness. These data demonstrate that relaxin acts on the vascular smooth muscle cells in the uterine artery and may be involved in the pregnancy-specific vascular remodelling of uterine arteries to increase vasodilation and blood flow to the uterus and placenta. (1) Novak J et al. (2001). J Clin Invest 107: 1469–75 (2) Novak J et al. (2006). FASEB J 20: 2352–62


1992 ◽  
Vol 5 (4) ◽  
pp. 225-231 ◽  
Author(s):  
Z. Wang ◽  
M. Yu ◽  
N.E. Robinson ◽  
R.V. Broadstone ◽  
P.H. LeBlanc ◽  
...  

2016 ◽  
Vol 34 ◽  
pp. e102
Author(s):  
S. Novella ◽  
X. Vidal-Gómez ◽  
I. Pérez-Monzó ◽  
A. Mompeón ◽  
D. Pérez-Cremades ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document