uterine tissue
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 55)

H-INDEX

29
(FIVE YEARS 2)

2021 ◽  

Abstract The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stephanie A. Morris ◽  
Kenneth S. Korach ◽  
Katherine A. Burns

Endometriosis is a debilitating disease that affects about 10% of reproductive-aged adolescents and women. The etiology of the disease is unknown; however, a prevailing hypothesis is that endometriosis develops from retrograde menstruation, where endometrial tissue and fluids flow back through the oviducts into the peritoneal cavity. There is no cure for endometriosis, and symptoms are treated palliatively. Despite the advances in knowledge, the complexity of endometriosis etiology is still unknown. Recent work by our group suggests that the initiation of endometriosis is immune-dependent. Using a mouse model of endometriosis, we hypothesized the initiation of endometriosis is immune regulated and uterine endometrium specific. In the absence of a functional immune system non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice), endometriotic lesions did not form. Uterine endometrial tissue forms endometriotic lesions, whereas tissues with differing basal expression levels of estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2), similar cellular composition to uterus (i.e. bladder, mammary gland, and lung), and treated with estradiol did not form lesions. As MMP7 is known to play a major role in the organization/reorganization of the endometrium during the menstrual cycle, blocking metalloproteinase (MMP) activity significantly decreased the invasive properties of these cells. Together, these findings suggest that endometriosis is immune and uterine specific and that MMP7 likely plays a role in the ability of uterine tissue and the innate immune system to establish and maintain endometriotic lesions.


Author(s):  
Allison R Hickman ◽  
Yuqing Hang ◽  
Rini Pauly ◽  
Frank A Feltus

Abstract Uterine cancer is the fourth most common cancer among women, projected to affect 66,000 US women in 2021. Uterine cancer often arises in the inner lining of the uterus, known as the endometrium, but can present as several different types of cancer, including endometrioid cancer, serous adenocarcinoma, and uterine carcinosarcoma. Previous studies have analyzed the genetic changes between normal and cancerous uterine tissue to identify specific genes of interest, including TP53 and PTEN. Here we used Gaussian Mixture Models to build condition-specific gene co-expression networks for endometrial cancer, uterine carcinosarcoma, and normal uterine tissue. We then incorporated uterine regulatory edges and investigated potential co-regulation relationships. These networks were further validated using differential expression analysis, functional enrichment, and a statistical analysis comparing the expression of transcription factors and their target genes across cancerous and normal uterine samples. These networks allow for a more comprehensive look into the biological networks and pathways affected in uterine cancer compared to previous singular gene analyses. We hope this study can be incorporated into existing knowledge surrounding the genetics of uterine cancer and soon become clinical biomarkers as a tool for better prognosis and treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Ting Song ◽  
Peng-Cheng Liu ◽  
Jie Tan ◽  
Chen-Yu Zou ◽  
Qian-Jin Li ◽  
...  

AbstractIntrauterine adhesion refers to endometrial repair disorders which are usually caused by uterine injury and may lead to a series of complications such as abnormal menstrual bleeding, recurrent abortion and secondary infertility. At present, therapeutic approaches to intrauterine adhesion are limited due to the lack of effective methods to promote regeneration following severe endometrial injury. Therefore, to develop new methods to prevent endometrial injury and intrauterine adhesion has become an urgent need. For severely damaged endometrium, the loss of stem cells in the endometrium may affect its regeneration. This article aimed to discuss the characteristics of various stem cells and their applications for uterine tissue regeneration.


Author(s):  
Othman E. Othman ◽  
Noha M. Osman ◽  
Nadia A. Abo El-Maaty ◽  
Eman R. Mahfouz

Background and Aim: Uterine lumen contamination with bacteria is ubiquitous in buffalo after parturition. Nearly one-third of these infected animals develop endometritis which leads to reduced fertility. The present study aimed to evaluate the expressions of IFN-γ and NOS2 genes in uterine tissue of buffaloes with endometritis and comparing them with those in healthy animals using RT-qPCR Materials and Methods: Uterine samples were collected from 50 apparently healthy and 50 clinically infected buffaloes. RNA was extracted from the collected buffalo's uteri and cDNA was synthesized from extracted RNA. Quantitative Real Time PCR technique was performed using this synthesized cDNA. Results: Apparent up-regulation of both genes mRNA expression was recorded in endometritis-infected animals with 8.3-folds for IFN-γ and 9.99-folds for NOS2 (P<0.001). Conclusion: The upregulation of IFN-γ and NOS2 expression in the uterine tissue of endometritis-infected buffaloes can be used as a scale for measuring the efficiency of drugs used for endometritis treatment.


Author(s):  
Narintadeach Charoensombut ◽  
Kinyoshi Kawabata ◽  
Jeonghyun Kim ◽  
Minki Chang ◽  
Tsuyoshi Kimura ◽  
...  

Author(s):  
Srividya Hanuman ◽  
Manasa Nune

Abstract Purpose Uterine anomalies are prevalent in women, and the major treatment assisted to them is hysterectomy as donor availability is extremely low. To overcome this, engineering uterine myometrium smooth muscle tissue has become very important. Several studies have shown that polycaprolactone (PCL) nanofibers are very effective in engineering smooth muscles, as this type of scaffold has structural similarities to the extracellular matrices of the cells. Here, we hypothesize that by electrospinning PCL nanofibers, they form a suitable scaffold for uterine tissue engineering. Methods Polycaprolactone nanofibrous scaffolds were fabricated, and surface modification was performed following two step wet chemistry method. First step is aminolysis which introduces the primary amine groups on the PCL scaffolds following which maltose is conjugated on the scaffolds. This was confirmed by the ninhydrin assay for the presence of amine groups. This was followed by ELLA assay where the presence of maltose on the scaffold was quantified. Modified scaffolds were further characterized by scanning electron microscope (SEM), contact angle analysis and Fourier transform infrared spectroscopy (FTIR). MTT assay, live-dead assay and actin staining were performed on the maltose immobilization to study the improvement of the cell attachment and proliferation rates on the modified scaffolds. Results Human uterine fibroblast (HUF) cells displayed significant proliferation on the maltose-modified PCL scaffolds, and they also exhibited appropriate morphology indicating that these modified fibers are highly suitable for uterine cell growth. Conclusion Our results indicate that the fabricated maltose PCL (MPCL) scaffolds would be a potential biomaterial to treat uterine injuries and promote regeneration. Lay Summary and Future Work Uterine anomalies are prevalent in women, and the major treatment is hysterectomy as donor availability is extremely low. Over the past few years, considerable efforts have been directed towards uterine tissue regeneration. This study is to design a tissue engineered scaffold that could act as a human uterine myometrial patch. We propose to create uterine fibroblast-based synthetic scaffolds that act in a condition similar to the intrauterine microenvironment where the embryos are embedded in the uterine wall. For understanding of the efficiency of the myometrial patch, functional characterization will be performed to study the effects of estrogen and prostaglandins on myometrial activity of the designed patch. Results from these experiments will assist a deeper understanding of how to construct a total bioengineered uterus which can substitute the uterus transplantation procedure, which nonetheless is in its initial stages of development. Graphical Abstract


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2636
Author(s):  
Ilona Kowalczyk-Zieba ◽  
Joanna Staszkiewicz-Chodor ◽  
Dorota Boruszewska ◽  
Krzysztof Lukaszuk ◽  
Joanna Jaworska ◽  
...  

Thyroid hormones control the functions of almost all body systems. Reproductive dysfunctions, such as abnormal sexual development, infertility, or irregularities in the reproductive cycle, might be associated with thyroid disorders. Uterine receptivity is the period when the uterus is receptive to the implantation of an embryo. During the receptivity period (implantation window), a newly formed blastocyst is incorporated into the uterine epithelium. Prostaglandins are well-known primary mediators of pathological conditions such as inflammation and cancer but are also essential for the physiology of female reproduction. The aim of this study was to evaluate the possible relationship between hypothyroidism and changes in the prostaglandin signaling pathways in the uterus and in the process of uterine receptivity in a rat model. The results show that hypothyroidism impaired uterine receptivity by decreasing the level of E2 as well as decreasing the expression of the uterine-receptivity factors homeobox A10 and osteopontin. Moreover, hypothyroidism caused changes in the expression of elements of the prostaglandin E2, F2α, and I2 signaling pathways and changed the levels of those prostaglandins in the uterine tissue. The results suggest that the mechanisms by which hypothyroidism affects female reproductive abnormalities might involve the prostaglandin signaling pathway, resulting in a subsequent reduction in uterine receptivity.


Author(s):  
Gustavo Henrique Doná Rodrigues Almeida ◽  
Rebeca Piatniczka Iglesia ◽  
Michelle Silva Araújo ◽  
Ana Claudia Oliveira Carreira ◽  
Erika Xavier dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document