scholarly journals Reduced miR‐133a Results in Upregulation of Angiotensinogen in the Paraventricular Nucleus of Rats with Chronic Heart Failure

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Neeru Sharma ◽  
Shyam Nandi ◽  
Hong Zheng ◽  
Paras Mishra ◽  
Kaushik Patel
Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Neeru Sharma ◽  
Xuefei Liu ◽  
Hong Zheng ◽  
Kaushik Patel

Introduction and Hypothesis: Expression of neuronal nitric oxide synthase (nNOS) is decreased in the paraventricular nucleus (PVN) of rats with chronic heart failure (CHF), however the underlying molecular mechanism/s remain unclear. Recently, we demonstrated, Angiotensin II (Ang II) mediated increase in PIN: protein inhibitor of nNOS (0.76±0.10 Sham vs 1.12±0.09* CHF) which is known to down-regulate nNOS through disruption of active dimers (~60% decrease in dimer/monomer ratio) in the PVN of rats with CHF. Functionally impeded monomeric enzyme is degraded by ubiquitin proteasome system. Interestingly, PIN transcript levels remain unchanged in the PVN in CHF (1.00±0.23 Sham vs. 1.1±0.28 CHF). This observation prompted us to elucidate the molecular mechanism for the accumulation of PIN post-transcriptionally in the PVN in CHF Methods and Results: We used coronary artery ligation model of CHF in rats (6-8 weeks past ligation) and neuronal NG108-15 hybrid cell line. PIN translation was inhibited using cyclohexamide (CHX) for 0-4h after 20h of pretreatment with Ang II in NG108 cells. CHX mediated decrease in PIN expression was ameliorated with Ang II (0.19±0.04 vs 0.41±0.06* 4h). Proteasome inhibitor lactacystin (LC) treatment dramatically elevates PIN level suggesting the involvement of proteasome system in PIN regulation. Immunoprecipitation with ubiquitin antibody showed decrease PIN-Ub conjugates in Ang II-treated cells (1.04 ± 0.05 LC vs. 0.62 ± 0.07* LC AngII). In vitro ubiquitination assay in cells transfected with pCMV-(HA-Ub)8 vector revealed reduction of HA-Ub-PIN conjugates after Ang II treatment (9.2 ± 2.2 LC vs. 4.5 ± 0.6* LC Ang II). Furthermore, there was decreased accumulation of PIN-Ub conjugates in the PVN of CHF rats compared to Sham as revealed by immunohistochemistry. Conclusions: Taken together, our studies revealed that PIN is targeted for rapid degradation by the ubiquitin-proteasome pathway and Ang II delays the rate of degradation resulting in accumulation of PIN. We conclude that post-translational accumulation of PIN, mediated by Ang II, leads to a decrease in the dimeric active form of nNOS as well as protein levels of nNOS, which may lead to reduced nitric oxide resulting in over-activation of sympathetic drive during CHF.


2012 ◽  
Vol 171 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
B.A. Carillo ◽  
E.B. Oliveira-Sales ◽  
M. Andersen ◽  
S. Tufik ◽  
D. Hipolide ◽  
...  

2004 ◽  
Vol 287 (4) ◽  
pp. H1828-H1835 ◽  
Author(s):  
Guo-Qing Zhu ◽  
Lie Gao ◽  
Yifan Li ◽  
Kaushik P. Patel ◽  
Irving H. Zucker ◽  
...  

Previous studies showed that the cardiac sympathetic afferent reflex (CSAR) is enhanced in dogs and rats with chronic heart failure (CHF) and that central ANG II type 1 receptors (AT1R) are involved in this augmented reflex. The aim of this study was to determine whether intracerebroventricular administration and microinjection of antisense oligodeoxynucleotides targeted to AT1R mRNA would attenuate the enhanced CSAR and decrease resting renal sympathetic nerve activity (RSNA) in rats with coronary ligation-induced CHF. The CSAR was elicited by application of bradykinin to the epicardial surface of the left ventricle. Reflex responses to epicardial administration of bradykinin were enhanced in rats with CHF. The response to bradykinin was determined every 50 min after intracerebroventricular administration (lateral ventricle) or microinjection (into paraventricular nucleus) of antisense or scrambled oligonucleotides to AT1R mRNA. AT1R mRNA and protein levels in the paraventricular nucleus were significantly reduced 5 h after administration of antisense. Antisense significantly decreased resting RSNA and normalized the enhanced CSAR responses to bradykinin in rats with CHF. Scrambled oligonucleotides did not alter resting RSNA or the enhanced responses to bradykinin in rats with CHF. No significant effects were found in sham-operated rats after administration of either antisense or scrambled oligonucleotides. These results strongly suggest that central AT1R mRNA antisense reduces expression of AT1R protein and normalizes the augmentation of this excitatory sympathetic reflex and that genetic manipulation of protein expression can be used to normalize the sympathetic enhancement in CHF.


Sign in / Sign up

Export Citation Format

Share Document