scholarly journals The Role of MiR‐21 in Right Ventricular Remodeling Secondary to Pulmonary Arterial Pressure Overload

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Michael Chen ◽  
Weiting Chang ◽  
Jahan Mohebali ◽  
Amy Felder ◽  
Rita Laurence ◽  
...  
2018 ◽  
Vol 314 (3) ◽  
pp. L443-L460 ◽  
Author(s):  
Andrea L. Frump ◽  
Sébastien Bonnet ◽  
Vinicio A. de Jesus Perez ◽  
Tim Lahm

Right ventricular (RV) function is the primary prognostic factor for both morbidity and mortality in pulmonary hypertension (PH). RV hypertrophy is initially an adaptive physiological response to increased overload; however, with persistent and/or progressive afterload increase, this response frequently transitions to more pathological maladaptive remodeling. The mechanisms and disease processes underlying this transition are mostly unknown. Angiogenesis has recently emerged as a major modifier of RV adaptation in the setting of pressure overload. A novel paradigm has emerged that suggests that angiogenesis and angiogenic signaling are required for RV adaptation to afterload increases and that impaired and/or insufficient angiogenesis is a major driver of RV decompensation. Here, we summarize our current understanding of the concepts of maladaptive and adaptive RV remodeling, discuss the current literature on angiogenesis in the adapted and failing RV, and identify potential therapeutic approaches targeting angiogenesis in RV failure.


1991 ◽  
Vol 260 (4) ◽  
pp. H1299-H1306 ◽  
Author(s):  
J. R. Fineman ◽  
M. A. Heymann ◽  
S. J. Soifer

To investigate the role of endothelium-derived relaxing factor (EDRF) in the regulation of resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation, we studied the hemodynamic effects of N omega-nitro-L-arginine (a new stereospecific EDRF inhibitor) in 10 spontaneously breathing lambs and then compared the hemodynamic responses to five vasodilators during pulmonary hypertension induced by the infusion of U-46619 (a thromboxane A2 mimetic) or N omega-nitro-L-arginine. N omega-nitro-L-arginine caused a significant dose-dependent increase in pulmonary arterial pressure. Pretreatment with L-arginine blocked this increase, but pretreatment with D-arginine did not, suggesting that N omega-nitro-L-arginine is a competitive inhibitor of L-arginine for EDRF production. During U-46619 infusions, acetylcholine, ATP-MgCl2, isoproterenol, sodium nitroprusside, and 8-bromoguanosine 3',5'-cyclic monophosphate (8-bromo-cGMP) decreased pulmonary arterial pressure. During N omega-nitro-L-arginine infusions, the decrease in pulmonary arterial pressure caused by acetylcholine and ATP-MgCl2 (endothelium-dependent vasodilators) was significantly attenuated, but the decrease caused by isoproterenol, sodium nitroprusside, and 8-bromo-cGMP (endothelium-independent vasodilators) was unchanged. This study supports the hypothesis that EDRF in part mediates resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation. N omega-nitro-L-arginine is useful for studying EDRF inhibition in intact animals.


1990 ◽  
Vol 69 (4) ◽  
pp. 1494-1501 ◽  
Author(s):  
P. B. Zanaboni ◽  
J. D. Bradley ◽  
L. J. Baudendistel ◽  
R. O. Webster ◽  
T. E. Dahms

The effect of cyclooxygenase inhibition in phorbol myristate acetate (PMA)-induced acute lung injury was studied in isolated constant-flow blood-perfused rabbit lungs. PMA caused a 51% increase in pulmonary arterial pressure (localized in the arterial and middle segments as measured by vascular occlusion pressures), a 71% increase in microvascular permeability (measured by the microvascular fluid filtration coefficient, Kf), and a nearly threefold increase in perfusate thromboxane (Tx) B2 levels. Cyclooxygenase inhibition with three chemically dissimilar inhibitors, indomethacin (10(-7) and 10(-6) M), meclofenamate (10(-6) M), and ibuprofen (10(-5) M), prevented the Kf increase without affecting the pulmonary arterial pressure increase or resistance distribution changes after PMA administration. The specific role of TxA2 was investigated by pretreatment with OKY-046, a specific Tx synthase inhibitor, or infusion of SQ 29548, a TxA2 receptor antagonist; both compounds failed to protect against either the PMA-induced permeability or the vascular resistance increase. These results indicate that cyclooxygenase-mediated products of arachidonic acid other than TxA2 mediate the PMA-induced permeability increase but not the hypertension.


1983 ◽  
Vol 55 (2) ◽  
pp. 558-561 ◽  
Author(s):  
J. Lindenfeld ◽  
J. T. Reeves ◽  
L. D. Horwitz

In resting conscious dogs, administration of cyclooxygenase inhibitors results in modest increases in pulmonary arterial pressure and pulmonary vascular resistance, suggesting that vasodilator prostaglandins play a role in maintaining the low vascular resistance in the pulmonary bed. To assess the role of these vasodilator prostaglandins on pulmonary vascular resistance during exercise, we studied seven mongrel dogs at rest and during exercise before and after intravenous meclofenamate (5 mg/kg). Following meclofenamate, pulmonary vascular resistance rose both at rest (250 24 vs. 300 +/- 27 dyn . s . cm-5, P less than 0.01) and with exercise (190 +/- 9 vs. 210 +/- 12 dyn . s . cm-5, P less than 0.05). Systemic vascular resistance rose slightly following meclofenamate both at rest and during exercise. There were no changes in cardiac output. The effects of cyclooxygenase inhibition, although significant, were less during exercise than at rest. This suggests that the normal fall in pulmonary vascular resistance during exercise depends largely on factors other than vasodilator prostaglandins.


Sign in / Sign up

Export Citation Format

Share Document