scholarly journals Structural insights into the recognition mechanism between an antitumor galectin AAL and the Thomsen‐Friedenreich antigen

2010 ◽  
Vol 24 (10) ◽  
pp. 3861-3868 ◽  
Author(s):  
Lei Feng ◽  
Hui Sun ◽  
Ying Zhang ◽  
De‐Feng Li ◽  
Da‐Cheng Wang
2015 ◽  
Vol 197 (6) ◽  
pp. 1125-1134 ◽  
Author(s):  
Chun-Yang Li ◽  
Xiu-Lan Chen ◽  
Qi-Long Qin ◽  
Peng Wang ◽  
Wei-Xin Zhang ◽  
...  

ABSTRACTPeptide uptake is important for nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria absorb peptides is still not fully understood. DppA is the periplasmic dipeptide binding protein of dipeptide permease (Dpp; an important peptide transporter in bacteria) and exclusively controls the substrate specificity of Dpp. Here, the substrate binding specificity of deep-seaPseudoalteromonassp. strain SM9913 DppA (PsDppA) was analyzed for 25 different dipeptides with various properties by using isothermal titration calorimetry measurements.PsDppA showed binding affinities for 8 dipeptides. To explain the multispecific substrate recognition mechanism ofPsDppA, we solved the crystal structures of unligandedPsDppA and ofPsDppA in complex with 4 different types of dipeptides (Ala-Phe, Met-Leu, Gly-Glu, and Val-Thr).PsDppA alternates between an “open” and a “closed” form during substrate binding. Structural analyses of the 4PsDppA-substrate complexes combined with mutational assays indicate thatPsDppA binds to different substrates through a precise mechanism: dipeptides are bound mainly by the interactions between their backbones andPsDppA, in particular by anchoring their N and C termini through ion-pair interactions; hydrophobic interactions are important in binding hydrophobic dipeptides; and Lys457 is necessary for the binding of dipeptides with a C-terminal glutamic acid or glutamine. Additionally, sequence alignment suggests that the substrate recognition mechanism ofPsDppA may be common in Gram-negative bacteria. All together, our results provide structural insights into the multispecific substrate recognition mechanism of marine Gram-negative bacterial DppA, which provides a better understanding of the mechanisms of marine bacterial peptide uptake.IMPORTANCEPeptide uptake plays a significant role in nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria recognize and absorb peptides is still unclear. This study analyzed the substrate binding specificity of deep-seaPseudoalteromonassp. strain SM9913 DppA (PsDppA; the dipeptide-binding protein of dipeptide permease) and solved the crystal structures of unligandedPsDppA andPsDppA in complex with 4 different types of dipeptides. The multispecific recognition mechanism ofPsDppA for dipeptides is explained based on structural and mutational analyses. We also find that the substrate-binding mechanism ofPsDppA may be common in Gram-negative bacteria. This study sheds light on marine Gram-negative bacterial peptide uptake and marine nitrogen cycling.


2018 ◽  
Vol 11 (1) ◽  
pp. 218-221 ◽  
Author(s):  
Jian Liu ◽  
Zeyuan Guan ◽  
Hongbo Liu ◽  
Liangbo Qi ◽  
Delin Zhang ◽  
...  

Author(s):  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Saroj Kumar Panda ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ~5000 folds within 48 hours, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site, with MM/PBSA free energy of -135.2 kJ/mol, almost twice that of Helicase (-76.6 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration. </p>


Sign in / Sign up

Export Citation Format

Share Document