ester hydrolysis
Recently Published Documents


TOTAL DOCUMENTS

791
(FIVE YEARS 36)

H-INDEX

51
(FIVE YEARS 3)

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5838
Author(s):  
Eleonora Colombo ◽  
Giuseppe Paladino ◽  
Umberto Ciriello ◽  
Daniele Passarella

The preparation of 7R-HMR (allo-hydroxymatairesinol) is reported by: (a) NaBH4 kinetic reduction of 7R/7S diastereomeric mixture; and (b) epimerization of the C7 hydroxyl group by Mitsunobu reaction and subsequent ester hydrolysis. The availability of highly pure target compound (7R-HMR) made it possible to confirm the structure of the target compound and to complete the full spectroscopic characterization.


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 509
Author(s):  
Matthias J. Richter ◽  
Lea Wagmann ◽  
Tanja M. Gampfer ◽  
Simon D. Brandt ◽  
Markus R. Meyer

Quinolin-8-yl 4-methyl-3-(piperidine-1-sulfonyl)benzoate (QMPSB) and quinolin-8-yl 4-methyl-3-(piperidine-1-carbonyl)benzoate (QMPCB, SGT-11) are synthetic cannabinoid receptor agonists (SCRAs). Knowing their metabolic fate is crucial for the identification of toxicological screening targets and to predict possible drug interactions. The presented study aimed to identify the in vitro phase I/II metabolites of QMPSB and QMPCB and to study the contribution of different monooxygenases and human carboxylesterases by using pooled human liver S9 fraction (pHLS9), recombinant human monooxygenases, three recombinant human carboxylesterases, and pooled human liver microsomes. Analyses were carried out by liquid chromatography high-resolution tandem mass spectrometry. QMPSB and QMPCB showed ester hydrolysis, and hydroxy and carboxylic acid products were detected in both cases. Mono/dihydroxy metabolites were formed, as were corresponding glucuronides and sulfates. Most of the metabolites could be detected in positive ionization mode with the exception of some QMPSB metabolites, which could only be found in negative mode. Monooxygenase activity screening revealed that CYP2B6/CYP2C8/CYP2C9/CYP2C19/CYP3A4/CYP3A5 were involved in hydroxylations. Esterase screening showed the involvement of all investigated isoforms. Additionally, extensive non-enzymatic ester hydrolysis was observed. Considering the results of the in vitro experiments, inclusion of the ester hydrolysis products and their glucuronides and monohydroxy metabolites into toxicological screening procedures is recommended.


2021 ◽  
pp. 100093
Author(s):  
Jihong Lian ◽  
Jelske N. van der Veen ◽  
Russell Watts ◽  
René L. Jacobs ◽  
Richard Lehner

2021 ◽  
Author(s):  
Istvan Kocsis ◽  
Yudi Ding ◽  
Nicholas H. Williams ◽  
Christopher A. Hunter

Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.


RSC Advances ◽  
2021 ◽  
Vol 11 (38) ◽  
pp. 23714-23718
Author(s):  
Xinyu Liu ◽  
Riley Waters ◽  
Hannah E. Gilbert ◽  
Gage T. Barroso ◽  
Kelsey M. Boyle ◽  
...  

Peptide catalysts based on TrpZip scaffolds for the hydrolysis of para-nitrophenylacetate in aqueous media were found to have higher catalytic activity in sequences without β-hairpin character.


Author(s):  
Huey Sze Leong ◽  
Shimpei Watanabe ◽  
Unnikrishnan Kuzhiumparambil ◽  
Ching Yee Fong ◽  
Hooi Yan Moy ◽  
...  

Abstract Purpose A tert-leucinate derivative synthetic cannabinoid, methyl (2S)-2-([1-(4-fluorobutyl)-1H-indazole-3-carbonyl]amino)-3,3-dimethylbutanoate (4F-MDMB-BINACA, 4F-MDMB-BUTINACA or 4F-ADB) is known to adversely impact health. This study aimed to evaluate the suitability of three different modes of monitoring metabolism: HepG2 liver cells, fungus Cunninghamella elegans (C. elegans) and pooled human liver microsomes (HLM) for comparison with human in-vivo metabolism in identifying suitable urinary marker(s) for 4F-MDMB-BINACA intake. Methods Tentative structure elucidation of in-vitro metabolites was performed on HepG2, C. elegans and HLM using liquid chromatography–tandem mass spectrometry and high-resolution mass spectrometry analysis. In-vivo metabolites obtained from twenty authentic human urine samples were analysed using liquid chromatography–Orbitrap mass spectrometry. Results Incubation with HepG2, C. elegans and HLM yielded nine, twenty-three and seventeen metabolites of 4F-MDMB-BINACA, respectively, formed via ester hydrolysis, hydroxylation, carboxylation, dehydrogenation, oxidative defluorination, carbonylation or reaction combinations. Phase II metabolites of glucosidation and sulfation were also exclusively identified using C. elegans model. Eight in-vivo metabolites tentatively identified were mainly products of ester hydrolysis with or without additional dehydrogenation, N-dealkylation, monohydroxylation and oxidative defluorination with further oxidation to butanoic acid. Metabolites with intact terminal methyl ester moiety, i.e., oxidative defluorination with further oxidation to butanoic acid, were also tentatively identified. Conclusions The in-vitro models presented proved useful in the exhaustive metabolism studies. Despite limitations, HepG2 identified the major 4F-MDMB-BINACA ester hydrolysis metabolite, and C. elegans demonstrated the capacity to produce a wide variety of metabolites. Both C. elegans and HLM produced all the in-vivo metabolites. Ester hydrolysis and ester hydrolysis plus dehydrogenation 4F-MDMB-BINACA metabolites were recommended as urinary markers for 4F-MDMB-BINACA intake.


Sign in / Sign up

Export Citation Format

Share Document