Differential Effects of Intrathecally Administered Morphine and Its Interaction with Cholecystokinin-B Antagonist on Thermal Hyperalgesia following Two Models of Experimental Mononeuropathy in the Rat 

1999 ◽  
Vol 90 (5) ◽  
pp. 1382-1391 ◽  
Author(s):  
Tatsuo Yamamoto ◽  
Yoshihiko Sakashita

Background Cholecystokinin-B receptor activation has been reported to reduce morphine analgesia. Neuropathic pain is thought to be relatively refractory to opioids. One possible mechanisms for a reduced effect of morphine on neuropathic pain is the induction of cholecystokinin in the spinal cord by nerve injury. The authors evaluated the role of the spinal cholecystokinin-B receptor on morphine analgesia in two rat neuropathic pain models: chronic constriction injury and partial sciatic nerve injury. Methods A chronic constriction injury is created by placing four loosely tied ligatures around the right sciatic nerve. A partial sciatic nerve injury was created by tight ligation of one third to one half of the right sciatic nerve. All drugs were injected intrathecally 7 and 11 days after the nerve injury. The effect of the drugs was reflected in the degree of paw withdrawal latency to thermal nociceptive stimulation. The paw withdrawal latencies of injured and uninjured paws were measured 5, 15, 30, and 60 min after the drugs were injected. Results In the chronic constriction injury model, intrathecal morphine increased the paw withdrawal latencies of injured and uninjured paws. PD135158, a cholecystokinin-B receptor antagonist, potentiated the analgesic effect of morphine on injured and uninjured paws. In the partial sciatic nerve injury model, the effect of morphine on the injured paw was less potent than that on the uninjured paw, and PD135158 potentiated the morphine analgesia in the uninjured paw and had only a minor effect on the morphine analgesia in the injured paw. Conclusions The effectiveness of morphine for thermal hyperalgesia after nerve injury depends on the type of nerve injury. The role of the cholecystokinin-B receptor in morphine analgesia in thermal hyperalgesia after nerve injury also depends on the type of nerve injury.

Author(s):  
Saurabh Kohli ◽  
Taruna Sharma ◽  
Juhi Kalra ◽  
Dilip C. Dhasmana

Background: Neuropathic pain is associated with prolonged disability and is usually not responsive to conventional analgesics like NSAIDs and opioids. Even the recommended first-line drugs are effective in less than 50% patients. Thus, drugs with different mechanisms of action are needed. Baclofen, a GABA-B agonist has shown benefit in different types of neuropathic pains and is compared against pregabalin.Methods: The sciatic nerve was ligated in 2 groups of 6 rats each as per the chronic constriction injury model of neuropathic pain on day 0. After 14 days the effect of single doses of pregabalin (30mg/kg) and baclofen (5mg/kg) intraperitoneally were assessed over a 2 hours period. Thermal and mechanical hyperalgesia were assessed as measures of neuropathic pain by the hotplate and pin-prick method respectively.Results: Significant thermal and mechanical hyperalgesia was produced 14 days after sciatic nerve ligation in both the groups (p <0.05). Both pregabalin (p <0.001) and baclofen (p <0.01) were effective in decreasing thermal hyperalgesia throughout the two hours study period, but pregabalin was more effective as compared to baclofen (p <0.05) at 30, 60 and 120minutes. Both the drugs produced a significant decrease in mechanical hyperalgesia (p <0.01) throughout the study period. Again, pregabalin was the more effective drug (p <0.05) at all time points.Conclusions: Significant thermal and mechanical hyperalgesia was seen 14 days after sciatic nerve ligation. Both pregabalin and baclofen were effective in reversing the hyperalgesia, but pregabalin was the more effective of the two drugs at all time points.


Pain ◽  
2015 ◽  
Vol 156 (12) ◽  
pp. 2595-2606 ◽  
Author(s):  
Franciane Bobinski ◽  
Tamara A.A. Ferreira ◽  
Marina M. Córdova ◽  
Patrícia A. Dombrowski ◽  
Cláudio da Cunha ◽  
...  

2018 ◽  
Vol Volume 11 ◽  
pp. 281-291 ◽  
Author(s):  
Megumi Sumizono ◽  
Harutoshi Sakakima ◽  
Shotaro Otsuka ◽  
Takuto Terashi ◽  
Kazuki Nakanishi ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Prasad Neerati ◽  
Harika Prathapagiri

Abstract Background Chronic neuropathic pain syndrome is associated with impaired quality of life and is poorly manageable. Alpha lipoic acid (ALA) is a powerful antioxidant and showed its effectiveness on diabetic neuropathy and other acute peripheral nerve injuries but it was not evaluated in the chronic neuropathic pain, chronic constriction injury (CCI) in rat model by using duloxetine (DLX) as standard. Methodology The main objective of the study was to expedite ALA effect on chronic peripheral neuropathy induced by CCI of sciatic nerve in rats. In this study, male Wister rats were randomly divided into six groups (n = 8) including, normal saline, sham operated, surgery control, DLX 30mg/kg treated, ALA treated 25mg/kg, and ALA+DLX. The CCI of sciatic nerve was conducted on all animals except normal saline group and studied for 21 days (i.e. 14 days treatment period & 7 days treatment free period) by using different behavioral, biochemical and, histopathology studies. Results ALA showed minor but significant decrease of thermal hyperalgesia, cold allodynia, malondialdehyde (MDA), total protein, lipid peroxidation, and nitric oxide levels and significant increase of motor coordination, glutathione level and decreased axonal degeneration significantly. These effects sustained even during treatment free period. ALA enhanced the effect of DLX when given in combination by showing sustained effect. In conclusion, ALA acted as potent antioxidant may be this activity is responsible for the potent neuroprotective effect. Conclusion Hence, ALA attenuated the nueroinflammation mediated by chronic peripheral neuropathy. Further studies are warranted with ALA to develop as a clinically relevant therapeutic agent for the treatment of neuropathic pain.


2014 ◽  
Vol 564 ◽  
pp. 27-31 ◽  
Author(s):  
Masahiro Ohsawa ◽  
Junpei Mutoh ◽  
Shohei Yamamoto ◽  
Hiroaki Hisa

2018 ◽  
Vol 33 (6) ◽  
pp. 1341-1349 ◽  
Author(s):  
Luana Gabriel de Souza ◽  
Alexandre Márcio Marcolino ◽  
Heloyse Uliam Kuriki ◽  
Elaine Cristina Dalazen Gonçalves ◽  
Marisa de Cássia Registro Fonseca ◽  
...  

1991 ◽  
Vol 7 (4) ◽  
pp. 42-44 ◽  
Author(s):  
Alberto E. Panerai ◽  
Mauro Bianchi ◽  
Paola Sacerdote ◽  
Carla Ripamonti ◽  
Vittorio Ventafridda ◽  
...  

Studies conducted in recent years have helped define the role of antidepressant drugs in the management of cancer pain. The anti-nociceptive action of these agents seems to be independent of beneficial effect on depression or mood. Among antidepressant drugs, those of the tricyclic class are preferred when an analgesic effect is sought. Their primary application is for pain due to nerve injury, so-called “neuropathic pain”. Although the co-administration of tricyclic antidepressants may increase plasma morphine concentrations, any potentiation of morphine analgesia is thought not to be due to an increased bioavailability of the opiate, but to an intrinsic analgesic effect of antidepressants. On this basis, the use of antidepressants in combination with opioids for the treatment of cancer pain is suitable when a component of deafferentation is present or when there is concomitant depressive illness.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hui Yao ◽  
Hao Lu ◽  
Rong Zou ◽  
Xiwen Chen ◽  
Hanlin Xu

The purpose of this study was to prepare a liposomal temperature-sensitive gel able to slowly release resveratrol after local intramuscular injection. The best formulation of resveratrol liposomes was based on the highest encapsulation efficiency and drug loading designed by Box-Behnken. The prepared liposomes were approximately circular, with a mean particle diameter of 161.5±0.12 nm and zeta potential of -6.9 mV. The optimized liposomes were dispersed in a polymer gel (PLGA-PEG-PLGA) for preparation of an in situ-formed gel at 35±2°C. In vitro release of the prepared liposome temperature-sensitive gel was studied and compared with ordinary drug-releasing gels, revealing a significantly longer drug release time. Finally, a rat sciatic nerve injury model was used to evaluate the pharmacological activity of the liposome temperature-sensitive gels for the repair of damaged nerves. The results indicate that the gel was able to promote recovery of damaged nerves.


Sign in / Sign up

Export Citation Format

Share Document