The Placental Transfer and Fetal Effects of Levobupivacaine, Racemic Bupivacaine, and Ropivacaine

1999 ◽  
Vol 90 (6) ◽  
pp. 1698-1703. ◽  
Author(s):  
Alan C. Santos ◽  
Barry Karpel ◽  
George Noble

Background The purposes of this study were to assess the effects of levobupivacaine on uterine blood flow and fetal well-being and to compare its placental transfer with that of bupivacaine and ropivacaine. Methods After a control period, pregnant ewes that were fitted with instruments for long-term monitoring were randomized to receive a two-step intravenous infusion of levobupivacaine, bupivacaine, or ropivacaine, in a blinded manner, for 1 h. Maternal and fetal hemodynamics were monitored during the study. Arterial blood samples were drawn at 30 and 60 min of infusion from the mother and fetus to determine the acid-base status (60 min only) and serum drug concentrations. The fetal brain, heart, liver, lungs, adrenal glands, and kidneys were obtained to measure tissue drug levels. Results Maternal blood pressure, central venous and intraamniotic pressures, acid-base status and uterine blood flow were unaffected by any drug infusion. In contrast to the other two local anesthetics, the infusion of bupivacaine was associated with a small but significant decrease in the ewe's heart rate. At the end of the study, the heart rate in the bupivacaine-treated animals was significantly less than in the animals treated with the other two drugs. All fetuses were in good condition at the start of study, and none of the local anesthetics affected fetal well-being. No significant differences were found among the three drugs in the maternal serum, fetal serum, fetal tissue concentrations, and tissue:serum concentration ratios. Conclusions Levobupivacaine was similar to bupivacaine and ropivacaine in causing no important hemodynamic changes in the pregnant ewe and fetus. There were no significant differences in the fetal serum and tissue levels of the drugs.

1982 ◽  
Vol 57 (3) ◽  
pp. A383-A383 ◽  
Author(s):  
M. A. Rosen ◽  
S. C. Hughes ◽  
J. D. Curtis ◽  
M. Norton ◽  
G. Levinson ◽  
...  

1974 ◽  
Vol 40 (4) ◽  
pp. 340-347 ◽  
Author(s):  
Gershon Levinson ◽  
Sol M. Shnider ◽  
Alfred A. deLorimier ◽  
John L Steffenson

1998 ◽  
Vol 201 (18) ◽  
pp. 2601-2608 ◽  
Author(s):  
RA Rose ◽  
JL Wilkens ◽  
RL Walker

American lobsters Homarus americanus were exercised on an underwater treadmill at speeds from 1.7 to 8 m min-1 to determine the effects of exercise on heart rate, ventilation rate and acid-base status. Heart and ventilation rates showed almost instantaneous increases at the start of exercise, but the magnitude of the increase was not related to speed. Maximum heart rate was approximately 80-90 beats min-1 and maximum ventilation rate was 175-180 beats min-1 at all speeds tested. Exercise at all speeds caused a decrease in haemolymph pH, with the acidosis after exercise at 8 m min-1 being significantly greater than at the other three speeds. Concomitant with this acidosis was a large increase in partial pressure of carbon dioxide, with the largest increase occurring after exercise at 8 m min-1. The concentration of lactate in the haemolymph increased to similar levels at all speeds of walking. Davenport analysis indicates that the acidosis was predominantly respiratory in nature. Although it was anticipated that heart and ventilation rates would show increases proportional to the speed of exercise, this was not the case. Rather, the responses were fixed regardless of walking speed. The reason for this phenomenon remains unexplained.


1982 ◽  
Vol 242 (3) ◽  
pp. H429-H436 ◽  
Author(s):  
R. B. Wilkening ◽  
S. Anderson ◽  
L. Martensson ◽  
G. Meschia

The effect of variations of uterine blood flow (F) on placental transfer was examined in six chronic sheep preparations by measuring the placental clearances of ethanol (CE) and antipyrine (CA) at different levels of F. Norepinephrine infusion, hemorrhage, and occlusion of the terminal aorta were used to reduce F below normal. The reduction of F had no appreciable effect on umbilical blood flow (f). In each ewe, CE significantly correlated with F. The CE vs. F relationship at constant f was curvilinear with convexity toward the clearance axis. Regression analysis showed that the equation 1/CE = 1/.911 F + 1/.831 f could account for most of the CE variance (r2 = 0.97). Implicit in this relation is the concept that, given a certain level of placental perfusion, an F/f ratio congruent to 1 is optimal for the exchange of highly diffusible inert molecules between mother and fetus [CE/(F + f) was maximum at F/f = 0.955]. CA was not significantly different from CE at low clearance level but became smaller than CE at clearance values greater than 300 ml/min. This suggests that a high rates of perfusion placental permeability was a factor in limiting CA.


1992 ◽  
Vol 9 (04) ◽  
pp. 228-232 ◽  
Author(s):  
Noam Lazebnik ◽  
Michael Neuman ◽  
Andrzej Lysikiewicz ◽  
Le Dierker ◽  
Leon Mann

1981 ◽  
Vol 92 (1) ◽  
pp. 109-124
Author(s):  
E. W. TAYLOR ◽  
MICHÈLE G. WHEATLY

1. When first removed into air, crayfish showed transient increases in heart rate (fH) and scaphognathite rate (fR) which rapidly recovered to submerged levels and were unchanged for 24 h. The rate of O2 consumption(Moo2) increased from an initially low level and was then maintained for 24 h in air at the same level as in settled submerged animals. 2. There was an initial acidosis in the haemolymph which was both respiratory and metabolic due to the accumulation of CO2 and lactate. Progressive compensation by elevation of the levels of bicarbonate buffer in the haemolymph and reduction of circulating lactate levels returned pH towards submerged levels after 24 h in air. 3. Exposure to air resulted in a marked internal hypoxia with haemolymph O2, tensions, both postbranchial Pa, oo2 and prebranchial Pv, oo2, remaining low throughout the period of exposure. The oxygen content or the haemolymph was initially reduced, with a - vOO2 content difference close to zero. Within 24 h both Ca, oo2 and Cv, OO2 had returned towards their levels in submerged animals. These changes are explained by the Bohr shift on the haemocyanin consequent upon the measured pH changes. 4. After 48 h in air, MO2 and fH were significantly reduced and ventilation became intermittent. There was a slight secondary acidosis, increase in lactic acid levels and reduction in a - vO2 content difference in the haemolymph. 5. When crayfish were returned to water after 24 h in air, MOO2, fHfR were initially elevated by disturbance and there was a period of hyperventilation. In the haemolymph there was an initial slight alkalosis, and an increase in Ca, OO2 lactic acid. All variables returned to their settled submerged levels within 8 h.


1989 ◽  
Vol 256 (6) ◽  
pp. R1340-R1347 ◽  
Author(s):  
T. Kitanaka ◽  
R. D. Gilbert ◽  
L. D. Longo

To determine the maternal cardiovascular responses to long-term hypoxemia, we studied three groups of animals: 1) pregnant ewes (n = 20) at 110-115 days gestation subjected to hypoxia for up to 28 days; 2) pregnant ewes (n = 4) that served as normoxic controls; and 3) nonpregnant ewes (n = 6) subjected to hypoxemia for up to 28 days. We measured mean arterial pressure, heart rate, uterine blood flow, and uterine vascular resistance continuously for 1 h/day while the ewe was exposed to an inspired O2 fraction of 12-13% for at least 17 days. Arterial PO2, O2 saturation, hemoglobin, arteriovenous O2 difference, and uterine O2 uptake were measured daily while blood volume and erythropoietin concentration were measured weekly. In the pregnant hypoxic group arterial PO2 decreased from a control value of 101.5 +/- 5.1 to 59.2 +/- 5.1 Torr within a few minutes, where it remained throughout the study. The hemoglobin concentration increased from 8.9 +/- 0.5 to 10.0 +/- 0.5 g/dl within 24 h where it remained, whereas erythropoietin concentration increased from 16.6 +/- 2.1 to 39.1 +/- 7.8 mU/ml at 24 h but then returned to near-control levels. Arterial glucose concentration, mean arterial pressure, and cardiac output decreased slightly but insignificantly. In contrast, body weight, heart rate, blood volume, uterine blood flow, uterine O2 flow, uteroplacental O2 uptake, and the concentrations of catecholamines and cortisol remained relatively constant. Thus both pregnant and nonpregnant sheep experience relatively minor cardiovascular and hematologic responses in response to long-term hypoxemia of moderate severity.


Endocrinology ◽  
2012 ◽  
Vol 153 (12) ◽  
pp. 6012-6020 ◽  
Author(s):  
Charles R. Rosenfeld ◽  
Timothy Roy

Abstract Uterine blood flow (UBF) increases greater than 4-fold 90 min after systemic estradiol-17β (E2β) in nonpregnant sheep and remains elevated longer than 6–8 h; mean arterial pressure (MAP) is unchanged. Large-conductance Ca+2-activated (BKCa) and voltage-activated (KV) K+ channels contribute to the acute rise in UBF; their role in maintaining UBF and MAP longer than 90 min is unknown. We examined this in five nonpregnant, ovariectomized ewes with uterine artery (UA) flow probes and catheters in a UA for infusion of K+ channel inhibitors and uterine vein to sample venous effluent. Animals received systemic E2β (1.0 μg/kg; control), E2β+UA tetraethylammonium (TEA; 0.4–0.8 mm, n = 4), and E2β+UA 4-aminopyridine (4-AP; 0.01–0.08 mm, n = 4) to block BKCa and KV, respectively, while monitoring MAP, heart rate, and UBF. Uterine cGMP synthesis was measured. Ninety minutes after E2β, UBF rose 4.5-fold, uterine vascular resistance (UVR) fell greater than 5-fold and MAP was unchanged [78 ± 0.8 (sem) vs. 77 ± 1.5 mm Hg] in control studies and before UA inhibition with TEA and 4-AP. Between 90 and 120min, UBF, UVR, and MAP were unchanged after E2β alone. E2β+TEA dose dependently decreased ipsilateral UBF and increased UVR (24 ± 8.9 and 38 ± 16%, respectively, at 0.8 mm; P < 0.03); MAP was unchanged. Contralateral UBF/UVR were unaffected. E2β+4-AP also dose dependently decreased ipsilateral UBF and increased UVR (27 ± 5.3 and 76 ± 18%, respectively, at 0.08 mm; P < 0.001); however, MAP rose 27 ± 6.9% (P ≤ 0.006). E2β increased uterine cGMP synthesis greater than 3.5-fold and was unaffected by local K+ channel inhibition. BKCa and KV contribute to the rise and maintenance of E2β-induced uterine vasodilation, which is partially cGMP dependent. Systemic vascular KV also contributes to maintaining MAP after systemic E2β.


Sign in / Sign up

Export Citation Format

Share Document