Transcranial Motor Evoked Potentials Monitoring Is Better Than Somatosensory Evoked Potentials Monitoring for Detection of Spinal Cord Ischemia in Rat Aortic Occlusion Model

2002 ◽  
Vol 96 (Sup 2) ◽  
pp. A581
Author(s):  
Manabu Kakinohana ◽  
Takeshi Sasara ◽  
Tetsuya Kawabata ◽  
Seiya Nakamura ◽  
Kazuhiro Sugahara
1984 ◽  
Vol 60 (6) ◽  
pp. 1317-1319 ◽  
Author(s):  
Alfred G. Kaschner ◽  
Wilhelm Sandmann ◽  
Heinz Larkamp

✓ This article describes a new flexible bipolar neuroelectrode which is inserted percutaneously into the epidural space for segmental spinal cord stimulation. This electrode was used in experiments with dogs and monkeys for recording cortical somatosensory evoked potentials in order to identify intraoperative spinal cord ischemia during periods of aortic occlusion.


2016 ◽  
Vol 151 (2) ◽  
pp. 509-517 ◽  
Author(s):  
Kazumasa Tsuda ◽  
Norihiko Shiiya ◽  
Daisuke Takahashi ◽  
Kazuhiro Ohkura ◽  
Katsushi Yamashita ◽  
...  

2008 ◽  
Vol 108 (4) ◽  
pp. 580-587 ◽  
Author(s):  
Timothy S.J. Shine ◽  
Barry A. Harrison ◽  
Martin L. De Ruyter ◽  
Julia E. Crook ◽  
Michael Heckman ◽  
...  

Background Paraplegia is a devastating complication for patients undergoing repair of thoracoabdominal aortic aneurysms. A monitor to detect spinal cord ischemia is necessary if anesthesiologists are to intervene to protect the spinal cord during aortic aneurysm clamping. Methods The medical records of 60 patients who underwent thoracoabdominal aortic aneurysm repair with regional lumbar epidural cooling with evoked potential monitoring were reviewed. The authors analyzed latency and amplitude of motor evoked potentials, somatosensory evoked potentials, and H reflexes before cooling and clamping, after cooling and before clamping, during clamping, and after release of aortic cross clamp. Results Twenty minutes after the aortic cross clamp was placed, motor evoked potentials had 88% sensitivity and 65% specificity in predicting spinal cord ischemia. The negative predictive value of motor evoked potentials at 20 min after aortic cross clamping was 96%. Conclusions Rapid loss of motor evoked potentials or H reflexes after application of the aortic cross clamp identifies a subgroup of patients who are at high risk of developing spinal cord ischemia and in whom aggressive anesthetic and surgical interventions may be justified.


2014 ◽  
Vol 13 (6) ◽  
pp. 591-599 ◽  
Author(s):  
Jason S. Cheng ◽  
Michael E. Ivan ◽  
Christopher J. Stapleton ◽  
Alfredo Quinones-Hinojosa ◽  
Nalin Gupta ◽  
...  

Object Intraoperative dorsal column mapping, transcranial motor evoked potentials (TcMEPs), and somatosensory evoked potentials (SSEPs) have been used in adults to assist with the resection of intramedullary spinal cord tumors (IMSCTs) and to predict postoperative motor deficits. The authors sought to determine whether changes in MEP and SSEP waveforms would similarly predict postoperative motor deficits in children. Methods The authors reviewed charts and intraoperative records for children who had undergone resection for IMSCTs as well as dorsal column mapping and TcMEP and SSEP monitoring. Motor evoked potential data were supplemented with electromyography data obtained using a Kartush microstimulator (Medtronic Inc.). Motor strength was graded using the Medical Research Council (MRC) scale during the preoperative, immediate postoperative, and follow-up periods. Reductions in SSEPs were documented after mechanical traction, in response to maneuvers with the cavitational ultrasonic surgical aspirator (CUSA), or both. Results Data from 12 patients were analyzed. Three lesions were encountered in the cervical and 7 in the thoracic spinal cord. Two patients had lesions of the cervicomedullary junction and upper spinal cord. Intraoperative MEP changes were noted in half of the patients. In these cases, normal polyphasic signals converted to biphasic signals, and these changes correlated with a loss of 1–2 grades in motor strength. One patient lost MEP signals completely and recovered strength to MRC Grade 4/5. The 2 patients with high cervical lesions showed neither intraoperative MEP changes nor motor deficits postoperatively. Dorsal columns were mapped in 7 patients, and the midline was determined accurately in all 7. Somatosensory evoked potentials were decreased in 7 patients. Two patients each had 2 SSEP decreases in response to traction intraoperatively but had no new sensory findings postoperatively. Another 2 patients had 3 traction-related SSEP decreases intraoperatively, and both had new postoperative sensory deficits that resolved. One additional patient had a CUSA-related SSEP decrease intraoperatively, which resolved postoperatively, and the last patient had 3 traction-related sensory deficits and a CUSA-related sensory deficit postoperatively, none of which resolved. Conclusions Intraoperative TcMEPs and SSEPs can predict the degree of postoperative motor deficit in pediatric patients undergoing IMSCT resection. This technique, combined with dorsal column mapping, is particularly useful in resecting lesions of the upper cervical cord, which are generally considered to be high risk in this population. Furthermore, the spinal cord appears to be less tolerant of repeated intraoperative SSEP decreases, with 3 successive insults most likely to yield postoperative sensory deficits. Changes in TcMEPs and SSEP waveforms can signal the need to guard against excessive manipulation thereby increasing the safety of tumor resection.


Sign in / Sign up

Export Citation Format

Share Document