Somatotopy in Human Primary Somatosensory Cortex in Pain System

2005 ◽  
Vol 103 (4) ◽  
pp. 821-827 ◽  
Author(s):  
Yuichi Ogino ◽  
Hidenori Nemoto ◽  
Fumio Goto

Background Compared with somatotopical organization (somatotopy) in the postcentral gyrus in the tactile system, somatotopy in the pain system is not well understood. The aim of this study is to elucidate whether there is somatotopy in the human pain system. Methods To elucidate the somatotopy of nociceptive neurons in the postcentral gyrus, the authors recorded pain-evoked cortical responses to noxious intraepidermal electrical stimulation applied to the left hand and left foot in 11 male subjects, using magnetoencephalography. Results Brief painful stimuli evoked sustained cortical activity in the primary somatosensory cortex (SI) in the hemisphere contralateral to the stimulated side and in the secondary somatosensory cortex in both hemispheres. In SI, representations of the hand and foot were distinctly separated, with a more medial and posterior location for the foot, whereas no significant difference was found in the locations for the secondary somatosensory cortex dipole. The SI arrangement along the central sulcus was compatible with the homunculus revealed by Penfield using direct cortical stimulation during surgery. Conclusions The human pain system contains a somatotopical representation in SI but with less somatotopical organization in the secondary somatosensory cortex. The current results provide supporting evidence of SI involvement in human pain perception and suggest that human SI subserves the localization of the stimulated site in nociceptive processing.

2000 ◽  
Vol 83 (3) ◽  
pp. 1770-1776 ◽  
Author(s):  
Markus Ploner ◽  
Frank Schmitz ◽  
Hans-Joachim Freund ◽  
Alfons Schnitzler

Processing of tactile stimuli within somatosensory cortices has been shown to be complex and hierarchically organized. However, the precise organization of nociceptive processing within these cortices has remained largely unknown. We used whole-head magnetoencephalography to directly compare cortical responses to stimulation of tactile and nociceptive afferents of the dorsum of the hand in humans. Within the primary somatosensory cortex (SI), nociceptive stimuli activated a single source whereas tactile stimuli activated two sequentially peaking sources. Along the postcentral gyrus, the nociceptive SI source was located 10 mm more medially than the early tactile SI response arising from cytoarchitectonical area 3b and corresponded spatially to the later tactile SI response. Considering a mediolateral location difference between the hand representations of cytoarchitectonical areas 3b and 1, the present results suggest generation of the single nociceptive response in area 1, whereas tactile stimuli activate sequentially peaking sources in areas 3b and 1. Thus nociceptive processing apparently does not share the complex and hierarchical organization of tactile processing subserving elaborated sensory capacities. This difference in the organization of both modalities may reflect that pain perception rather requires reactions to and avoidance of harmful stimuli than sophisticated sensory capacities.


2000 ◽  
Vol 84 (2) ◽  
pp. 719-729 ◽  
Author(s):  
Dan R. Kenshalo ◽  
Koichi Iwata ◽  
Maurice Sholas ◽  
David A. Thomas

The organization and response properties of nociceptive neurons in area 1 of the primary somatosensory cortex (SI) of anesthetized monkeys were examined. The receptive fields of nociceptive neurons were classified as either wide-dynamic-range (WDR) neurons that were preferentially responsive to noxious mechanical stimulation, or nociceptive specific (NS) that were responsive to only noxious stimuli. The cortical locations and the responses of the two classes of neurons were compared. An examination of the neuronal stimulus-response functions obtained during noxious thermal stimulation of the glabrous skin of the foot or the hand indicated that WDR neurons exhibited significantly greater sensitivity to noxious thermal stimuli than did NS neurons. The receptive fields of WDR neurons were significantly larger than the receptive fields of NS neurons. Nociceptive SI neurons were somatotopically organized. Nociceptive neurons with receptive fields on the foot were located more medial in area 1 of SI than those with receptive fields on the hand. In the foot representation, the recording sites of nociceptive neurons were near the boundary between areas 3b and 1, whereas in the hand area, there was a tendency for them to be located more caudal in area 1. The majority of nociceptive neurons were located in the middle layers (III and IV) of area 1. The fact that nociceptive neurons were not evenly distributed across the layers of area 1 suggested that columns of nociceptive neurons probably do not exist in the somatosensory cortex. In electrode tracks where nociceptive neurons were found, approximately half of all subsequently isolated neurons were also classified as nociceptive. Low-threshold mechanoreceptive (LTM) neurons were intermingled with nociceptive neurons. Both WDR and NS neurons were found in close proximity to one another. In instances where the receptive field shifted, subsequently isolated cells were also classified as nociceptive. These data suggest that nociceptive neurons in area 1 of SI are organized in vertically orientated aggregations or clusters in layers III and IV.


1996 ◽  
Vol 76 (5) ◽  
pp. 3382-3403 ◽  
Author(s):  
F. Tremblay ◽  
S. A. Ageranioti-Belanger ◽  
C. E. Chapman

1. The discharge patterns of 359 single neurons in the hand representation of primary somatosensory cortex (SI) of two monkeys (Macaca mulatta) were recorded during the performance of a passive texture discrimination task with the contralateral hand (104 in area 3b, 149 in area 1, and 106 in area 2). Three nyloprint surfaces were mounted on a drum that was rotated under the digit tips. One surface was entirely smooth, whereas the other two were smooth over the first half and rough over the second half (smooth/ rough) (raised dots, 1 mm high and 1 mm diam, in a rectangular array; spatial period of 3 mm across the rows and columns for most recordings; 9 mm between columns for selected recordings). The monkeys were trained to distinguish between the smooth and smooth/rough surfaces. After the surface presentation, the monkey indicated the texture of the second half of the surface by pushing or pulling, respectively, on a lever with the other arm. For most recordings an average tangential speed of 49 mm/s was tested. For selected recordings motor speed was incremented (63, 75, or 89 mm/s). 2. Two hundred eighty-three neurons had a cutaneous receptive field (RF) on the hand (96 in area 3b, 120 in area 1, and 67 in area 2). Thirty-five neurons had a deep RF (4 in area 3b, 15 in area 1, and 16 in area 2). Seven neurons had mixed cutaneous and deep RFs (4 in area 1, 3 in area 2). Thirty-four neurons had no identifiable RF (4 in area 3b, 10 in area 1, and 20 in area 2). 3. The discharge of 185 of 359 neurons was significantly modulated during the presentation of one or both surfaces compared with the discharge at rest. Cells with a cutaneous RF that included part or all of the distal phalangeal pads of the digits used in the task (usually digits III and IV) were more likely to be modulated during surface presentation (132 of 179, 74%) than those with a cutaneous RF not in contact with the surfaces (24 of 104, 23%). The remaining neurons (mixed, deep, or no RF) were also infrequently modulated (29 of 76, 38%). 4. Of the 185 modulated units, 118 cells were classified as texture related because there was a significant difference in the discharge rate evoked by the smooth/rough and smooth surfaces. Cells with a cutaneous RF that included the digital pads in contact with the surfaces were frequently texture related (100 of 132, 76%). Texture sensitivity was less frequently observed in the remaining modulated neurons (18 of 53, 34%: cutaneous RF not in contact with the surfaces, deep RF, mixed cutaneous and deep RF, no identifiable RF). 5. Texture-related neurons were found in areas 3b, 1, and 2. Two patterns of texture-related responses were observed in the 100 cutaneous units with an RF in contact with the surfaces. Thirty-one units were classified as showing a phasic response at the time the digits encountered the leading edge of the rough half of the surface. Fifty-eight cells were classified as phasic-tonic (or sometimes tonic at the slowest motor speeds) because the response lasted for the duration of the presentation of the rough portion of the surface. The remaining 11 neurons could not be readily classified into one or the other category and, indeed, generally showed clear texture-related responses only at higher motor speeds (> 49 mm/s, 9 of 11). 6. Speed sensitivity was systematically evaluated in 41 of 100 texture-related units with a cutaneous RF in contact with the surfaces. The discharge of 66% of the units (27 of 41) varied significantly with the speed of surface presentation, with discharge increasing at higher speeds. Speed sensitivity was found in all three cytoarchitectonic areas (6 of 6 cells in area 3b, 11 of 22 in area 1, and 10 of 13 in area 2). 7. Contact force was also systematically monitored in these experiments (69 of 100 texture-related cells with a cutaneous RF in contact with the surfaces). Linear regression analyses indicated than 22% (15 of 69) of the texture-related units were sensitive to contact force (13


PLoS Biology ◽  
2007 ◽  
Vol 5 (5) ◽  
pp. e133 ◽  
Author(s):  
Joachim Gross ◽  
Alfons Schnitzler ◽  
Lars Timmermann ◽  
Markus Ploner

1999 ◽  
Vol 96 (14) ◽  
pp. 7705-7709 ◽  
Author(s):  
M. C. Bushnell ◽  
G. H. Duncan ◽  
R. K. Hofbauer ◽  
B. Ha ◽  
J.- I. Chen ◽  
...  

2012 ◽  
Vol 25 (0) ◽  
pp. 94
Author(s):  
Elisa Leonardelli ◽  
Valeria Occelli ◽  
Gianpaolo Demarchi ◽  
Massimo Grassi ◽  
Christoph Braun ◽  
...  

The present study aims to assess the mechanisms involved in the processing of potentially threatening stimuli presented within the peri-head space of humans. Magnetic fields evoked by air-puffs presented at the peri-oral area of fifteen participants were recorded by using magnetoencephalography (MEG). Crucially, each air puff was preceded by a sound, which could be either perceived as looming, stationary and close to the body (i.e., within the peri-head space) or stationary and far from the body (i.e., extrapersonal space). The comparison of the time courses of the global field power (GFP) indicated a significant difference in the time window ranging from 70 to 170 ms between the conditions. When the air puff was preceded by a stationary sound located far from the head stronger somatosensory activity was evoked as compared to the conditions where the sounds were located close to the head. No difference could be shown for the looming and the stationary prime stimulus close to the head. Source localization was performed assuming a pair of symmetric dipoles in a spherical head model that was fitted to the MRI images of the individual participants. Results showed sources in primary and secondary somatosensory cortex. Source activities in secondary somatosensory cortex differed between the three conditions, with larger effects evoked by the looming sounds and smaller effects evoked by the far stationary sounds, and the close stationary sounds evoking intermediate effects. Overall, these findings suggest the existence of a system involved in the detection of approaching objects and protecting the body from collisions in humans.


2006 ◽  
Vol 10 (S1) ◽  
pp. S83a-S83
Author(s):  
J. Gross ◽  
A. Schnitzler ◽  
L. Timmermann ◽  
M. Ploner

Sign in / Sign up

Export Citation Format

Share Document