The effects of expiratory positive airway pressure on functional residual capacity in normal subjects

1978 ◽  
Vol 6 (5) ◽  
pp. 320-322 ◽  
Author(s):  
C. S. GARRARD ◽  
M. SHAH
1990 ◽  
Vol 68 (4) ◽  
pp. 1732-1738 ◽  
Author(s):  
J. L. Werchowski ◽  
M. H. Sanders ◽  
J. P. Costantino ◽  
F. C. Sciurba ◽  
R. M. Rogers

The respiratory inductance plethysmograph (RIP) has recently gained popularity in both the research and clinical arenas for measuring tidal volume (VT) and changes in functional residual capacity (delta FRC). It is important however, to define the likelihood that individual RIP measurements of VT and delta FRC would be acceptably accurate (+/- 10%) for clinical and investigational purposes in spontaneously breathing individuals on continuous positive airway pressure (CPAP). Additionally, RIP accuracy has not been compared in these regards after calibration by two commonly employed techniques, the least squares (LSQ) and the quantitative diagnostic calibration (QDC) methods. We compared RIP with pneumotachographic (PTH) measurements of delta FRC and VT during spontaneous mouth breathing on 0-10 cmH2O CPAP. Comparisons were made after RIP calibration with both the LSQ (6 subjects) and QDC (7 subjects) methods. Measurements of delta FRC by RIPLSQ and RIPQDC were highly correlated with PTH measurements (r = 0.94 +/- 0.04 and r = 0.98 +/- 0.01 (SE), respectively). However, only an average of 30% of RIPQDC determinations per subject and 31.4% of RIPLSQ determinations per subject were accurate to +/- 10% of PTH values. An average of 55.2% (QDC) and 68.8% (LSQ) of VT determinations per subject were accurate to +/- 10% of PTH values. We conclude that in normal subjects, over a large number of determinations, RIP values for delta FRC and VT at elevated end-expiratory lung volume correlate well with PTH values. However, regardless of whether QDC or LSQ calibration is used, only about one-third of individual RIP determinations of delta FRC and one-half of two-thirds of VT measurements will be sufficiently accurate for clinical and investigational use.


1990 ◽  
Vol 68 (3) ◽  
pp. 1075-1079 ◽  
Author(s):  
F. Series ◽  
Y. Cormier ◽  
J. Couture ◽  
M. Desmeules

The influence of pulmonary inflation and positive airway pressure on nasal and pharyngeal resistance were studied in 10 normal subjects lying in an iron lung. Upper airway pressures were measured with two low-bias flow catheters while the subjects breathed by the nose through a Fleish no. 3 pneumotachograph into a spirometer. Resistances were calculated at isoflow rates in four different conditions: exclusive pulmonary inflation, achieved by applying a negative extra-thoracic pressure (NEP); expiratory positive airway pressure (EPAP), which was created by immersion of the expiratory line; continuous positive airway pressure (CPAP), realized by loading the bell of the spirometer; and CPAP without pulmonary inflation by simultaneously applying the same positive extrathoracic pressure (CPAP + PEP). Resistance measurements were obtained at 5- and 10-cmH2O pressure levels. Pharyngeal resistance (Rph) significantly decreased during each measurement; the decreases in nasal resistance were only significant with CPAP and CPAP + PEP; the deepest fall in Rph occurred with CPAP. It reached 70.8 +/- 5.5 and 54.8 +/- 6.5% (SE) of base-line values at 5 and 10 cmH2O, respectively. The changes in lung volume recorded with CPAP + PEP ranged from -180 to 120 ml at 5 cmH2O and from -240 to 120 ml at 10 cmH2O. Resistances tended to increase with CPAP + PEP compared with CPAP values, but these changes were not significant (Rph = 75.9 +/- 6.1 and 59.9 +/- 6.6% at 5 and 10 cmH2O of CPAP + PEP). We conclude that 1) the upper airway patency increases during pulmonary inflation, 2) the main effect of CPAP is related to pneumatic splinting, and 3) pulmonary inflation contributes little to the decrease in upper airways resistance observed with CPAP.


1996 ◽  
Vol 81 (1) ◽  
pp. 470-479 ◽  
Author(s):  
P. C. Deegan ◽  
P. Nolan ◽  
M. Carey ◽  
W. T. McNicholas

To determine upper airway (UA) and ventilatory responses to nasal continuous positive airway pressure (CPAP) and expiratory positive airway pressure (EPAP), we quantitated changes in alae nasi (AN) and genioglossus (GG) electromyographic (EMG) activity, ventilatory timing, and end-expiratory lung volume (EELV) at various levels of CPAP and EPAP in six normal subjects during wakefulness and in seven during sleep. The same measurements were also made before and after UA anesthesia in six normal subjects during wakefulness. During both wakefulness and sleep, CPAP application significantly increased EELV and decreased AN and GG EMG activities. In contrast, EPAP significantly increased EMG activities of both muscles while also increasing EELV during wakefulness. The EMG responses were less marked during sleep. Anesthesia of the UA abolished the EMG responses to CPAP but not to EPAP. These results suggest that, in normal subjects, CPAP application causes a reflex reduction in UA dilator muscle activity mediated by UA sensory receptors. In contrast, EPAP increases UA dilator muscle activity, with the response mediated by conscious influences or reflexes arising outside of the UA.


Sign in / Sign up

Export Citation Format

Share Document