Effects of positive airway pressure on upper airway dilator muscle activity and ventilatory timing

1996 ◽  
Vol 81 (1) ◽  
pp. 470-479 ◽  
Author(s):  
P. C. Deegan ◽  
P. Nolan ◽  
M. Carey ◽  
W. T. McNicholas

To determine upper airway (UA) and ventilatory responses to nasal continuous positive airway pressure (CPAP) and expiratory positive airway pressure (EPAP), we quantitated changes in alae nasi (AN) and genioglossus (GG) electromyographic (EMG) activity, ventilatory timing, and end-expiratory lung volume (EELV) at various levels of CPAP and EPAP in six normal subjects during wakefulness and in seven during sleep. The same measurements were also made before and after UA anesthesia in six normal subjects during wakefulness. During both wakefulness and sleep, CPAP application significantly increased EELV and decreased AN and GG EMG activities. In contrast, EPAP significantly increased EMG activities of both muscles while also increasing EELV during wakefulness. The EMG responses were less marked during sleep. Anesthesia of the UA abolished the EMG responses to CPAP but not to EPAP. These results suggest that, in normal subjects, CPAP application causes a reflex reduction in UA dilator muscle activity mediated by UA sensory receptors. In contrast, EPAP increases UA dilator muscle activity, with the response mediated by conscious influences or reflexes arising outside of the UA.

1990 ◽  
Vol 68 (3) ◽  
pp. 1075-1079 ◽  
Author(s):  
F. Series ◽  
Y. Cormier ◽  
J. Couture ◽  
M. Desmeules

The influence of pulmonary inflation and positive airway pressure on nasal and pharyngeal resistance were studied in 10 normal subjects lying in an iron lung. Upper airway pressures were measured with two low-bias flow catheters while the subjects breathed by the nose through a Fleish no. 3 pneumotachograph into a spirometer. Resistances were calculated at isoflow rates in four different conditions: exclusive pulmonary inflation, achieved by applying a negative extra-thoracic pressure (NEP); expiratory positive airway pressure (EPAP), which was created by immersion of the expiratory line; continuous positive airway pressure (CPAP), realized by loading the bell of the spirometer; and CPAP without pulmonary inflation by simultaneously applying the same positive extrathoracic pressure (CPAP + PEP). Resistance measurements were obtained at 5- and 10-cmH2O pressure levels. Pharyngeal resistance (Rph) significantly decreased during each measurement; the decreases in nasal resistance were only significant with CPAP and CPAP + PEP; the deepest fall in Rph occurred with CPAP. It reached 70.8 +/- 5.5 and 54.8 +/- 6.5% (SE) of base-line values at 5 and 10 cmH2O, respectively. The changes in lung volume recorded with CPAP + PEP ranged from -180 to 120 ml at 5 cmH2O and from -240 to 120 ml at 10 cmH2O. Resistances tended to increase with CPAP + PEP compared with CPAP values, but these changes were not significant (Rph = 75.9 +/- 6.1 and 59.9 +/- 6.6% at 5 and 10 cmH2O of CPAP + PEP). We conclude that 1) the upper airway patency increases during pulmonary inflation, 2) the main effect of CPAP is related to pneumatic splinting, and 3) pulmonary inflation contributes little to the decrease in upper airways resistance observed with CPAP.


1987 ◽  
Vol 62 (5) ◽  
pp. 2026-2030 ◽  
Author(s):  
C. G. Alex ◽  
R. M. Aronson ◽  
E. Onal ◽  
M. Lopata

To study the effects of continuous positive airway pressure (CPAP) on lung volume, and upper airway and respiratory muscle activity, we quantitated the CPAP-induced changes in diaphragmatic and genioglossal electromyograms, esophageal and transdiaphragmatic pressures (Pes and Pdi), and functional residual capacity (FRC) in six normal awake subjects in the supine position. CPAP resulted in increased FRC, increased peak and rate of rise of diaphragmatic activity (EMGdi and EMGdi/TI), decreased peak genioglossal activity (EMGge), decreased inspiratory time and inspiratory duty cycle (P less than 0.001 for all comparisons). Inspiratory changes in Pes and Pdi, as well as Pes/EMGdi and Pdi/EMGdi also decreased (P less than 0.001 for all comparisons), but mean inspiratory airflow for a given Pes increased (P less than 0.001) on CPAP. The increase in mean inspiratory airflow for a given Pes despite the decrease in upper airway muscle activity suggests that CPAP mechanically splints the upper airway. The changes in EMGge and EMGdi after CPAP application most likely reflect the effects of CPAP and the associated changes in respiratory system mechanics on the afferent input from receptors distributed throughout the intact respiratory system.


1998 ◽  
Vol 84 (5) ◽  
pp. 1701-1706 ◽  
Author(s):  
Yong-Xin Shi ◽  
Margaret Seto-Poon ◽  
John R. Wheatley

Exercise (Ex) and hypercapnia (HC) both lead to increases in ventilation and upper airway muscle (UAM) activity. To determine whether different breathing routes (nasal vs. oral) or stimuli produced differential UAM activation, electromyographic (EMG) activity of the alae nasi (AN) and genioglossus (GG) were measured in seven normal subjects seated on a bicycle ergometer. Subjects performed paired runs during both progressive Ex and HC while breathing through the nose alone (N) or the mouth alone (O). During hyperpnea, AN EMG was greater when the subjects were breathing via N [81 ± 6% maximum (HC) and 69 ± 7% maximum (Ex)] than when they were breathing via O [30 ± 5% maximum (HC) and 27 ± 5% maximum (Ex); both P < 0.01], whereas the GG EMG did not differ between N and O. Both AN and GG EMG were similar for Ex and HC when the subjects were breathing via the same route. We conclude that UAM activation was independent of the nature of the stimulus. However, the AN muscle but not the GG muscle demonstrated breathing-route dependence of activity.


2007 ◽  
Vol 102 (3) ◽  
pp. 1214-1219 ◽  
Author(s):  
Stephanie Willing ◽  
Maybelle San Pedro ◽  
Helen S. Driver ◽  
Peter Munt ◽  
Michael F. Fitzpatrick

Subjective nasal obstruction is common among users of continuous positive airway pressure (CPAP). The aim of this study was to measure the acute effect of CPAP on nasal resistance and nasal symptoms in awake normal subjects. Twenty-four healthy CPAP-naive adults [8 men, 16 women; mean age 30 yr (SD 14)] underwent a randomized controlled crossover study comparing nasal CPAP (8 cmH2O) for 6 h on one occasion and the control condition (nasal mask without CPAP) on the other. Nasal resistance measurements (posterior active rhinometry) before and after the test exposure were similar on both test days. Nasal resistance during CPAP exposure [2.04 cmH2O·l−1·s (SD 0.72)] was significantly lower than that of the control [2.67 cmH2O·l−1·s (SD 1.07)]: mean difference 0.66 cmH2O·l−1·s, 95% confidence interval 0.19–1.13 cmH2O·l−1·s. The gradient in pressure from CPAP mask to posterior naris during CPAP exposure varied from 1.6 to 2 cmH2O but was not significantly different between time points. Subjective nasal symptom scores and peak nasal inspiratory flow rates did not change significantly on either test day. We conclude that in awake CPAP-naive normal subjects, acute CPAP exposure is associated with a reduction in nasal resistance compared with the control condition, but it is not associated with an immediate post-CPAP change in subjective or objective nasal resistance.


Author(s):  
Indra Narang ◽  
Jayne C. Carberry ◽  
Jane E. Butler ◽  
Simon C. Gandevia ◽  
Alan K.I. Chiang ◽  
...  

Clinical use of heated, high flow nasal cannula (HFNC) for non-invasive respiratory support is increasing and may have a therapeutic role in stabilizing the upper airway in obstructive sleep apnea (OSA). However, physiological mechanisms by which HFNC therapy may improve upper-airway function and effects of different temperature modes are unclear. Accordingly, this study aimed to determine effects of incremental flows and temperature modes (heated and non-heated) of HFNC on upper airway muscle activity (genioglossus), pharyngeal airway pressure, breathing parameters and perceived comfort. Six participants (2 females, aged 35±14 years) were studied during wakefulness in supine position and received HFNC at variable flows (0-60 L/min) during heated (37ºC) and non-heated (21ºC) modes. Breathing parameters via calibrated Respitrace inductance bands (chest and abdomen), upper-airway pressures via airway transducers, and genioglossus muscle activity via intra-muscular bipolar fine wire electrodes were measured. Comfort levels during HFNC were quantified using a visual analogue scale. Increasing HFNC flows did not increase genioglossus muscle activation despite increased negative epiglottic pressure swings (p=0.009). HFNC provided ~7cmH2O positive airway pressure at 60 L/min in non-heated and heated modes. In addition, increasing the magnitude of HFNC flow reduced breathing frequency (p=0.045), increased expiratory time (p=0.040), increased peak inspiratory flow (p=0.002), and increased discomfort (p=0.004). Greater discomfort occurred at higher flows in non-heated versus heated mode (p=0.034). These findings provide novel insight into key physiological changes that occur with HFNC for respiratory support and indicate the primary mechanism for improved upper-airway stability is positive airway pressure, not increased pharyngeal muscle activity.


Sign in / Sign up

Export Citation Format

Share Document