Atrial natriuretic peptide improves pulmonary gas exchange by reducing extravascular lung water in canine model with oleic acid-induced pulmonary edema

2002 ◽  
Vol 30 (7) ◽  
pp. 1570-1575 ◽  
Author(s):  
Chieko Mitaka ◽  
Yukio Hirata ◽  
Kenichiro Habuka ◽  
Yutaka Narumi ◽  
Kuninori Yokoyama ◽  
...  
CHEST Journal ◽  
1998 ◽  
Vol 114 (1) ◽  
pp. 223-228 ◽  
Author(s):  
Chieko Mitaka ◽  
Yukio Hirata ◽  
Takashi Nagura ◽  
Yukio Tsunoda ◽  
Keisuke Amaha

1993 ◽  
Vol 148 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Rudi G. J. Westendorp ◽  
Arnout N. Roos ◽  
Hans G. Vd Hoeven ◽  
Ming Y. Tjiong ◽  
Ries Simons ◽  
...  

1998 ◽  
Vol 84 (6) ◽  
pp. 2143-2153 ◽  
Author(s):  
S. D. Caruthers ◽  
C. B. Paschal ◽  
N. A. Pou ◽  
R. J. Roselli ◽  
T. R. Harris

A three-dimensional magnetic resonance imaging (MRI) method to measure pulmonary edema and lung microvascular barrier permeability was developed and compared with conventional methods in nine mongrel dogs. MRIs were obtained covering the entire lungs. Injury was induced by injection of oleic acid (0.021–0.048 ml/kg) into a jugular catheter. Imaging followed for 0.75–2 h. Extravascular lung water and permeability-related parameters were measured from multiple-indicator dilution curves. Edema was measured as magnetic resonance signal-to-noise ratio (SNR). Postinjury wet-to-dry lung weight ratio was 5.30 ± 0.38 ( n = 9). Extravascular lung water increased from 2.03 ± 1.11 to 3.00 ± 1.45 ml/g ( n = 9, P < 0.01). Indicator dilution studies yielded parameters characterizing capillary exchange of urea and butanediol: the product of the square root of equivalent diffusivity of escape from the capillary and capillary surface area ( D 1/2 S) and the capillary permeability-surface area product ( PS). The ratio of D 1/2 Sfor urea to D 1/2 Sfor butanediol increased from 0.583 ± 0.027 to 0.852 ± 0.154 ( n = 9, P < 0.05). Whole lung SNR at baseline, before injury, correlated with D 1/2 Sand PS ratios (both P < 0.02). By using rate of SNR change, the mismatch of transcapillary filtration flow and lymph clearance was estimated to be 0.2–1.8 ml/min. The filtration coefficient was estimated from these values. Results indicate that pulmonary edema formation during oleic acid injury can be imaged regionally and quantified globally, and the results suggest possible regional quantification by using three-dimensional MRI.


Peptides ◽  
1994 ◽  
Vol 15 (4) ◽  
pp. 719-721 ◽  
Author(s):  
M. Wong ◽  
R. Demnati ◽  
M.C. Michoud ◽  
A. Robichaud ◽  
J.R. Cusson ◽  
...  

1991 ◽  
Vol 260 (4) ◽  
pp. H1080-H1086 ◽  
Author(s):  
S. Brimioulle ◽  
J. L. Vachiery ◽  
P. Lejeune ◽  
M. Leeman ◽  
C. Melot ◽  
...  

The effects of acidosis and alkalosis on pulmonary gas exchange were studied in 32 pentobarbital sodium-anesthetized intact dogs after induction of oleic acid (0.06 ml/kg) pulmonary edema. Gas exchange was assessed at constant ventilation and constant cardiac output, by venous admixture calculations and by intrapulmonary shunt measurements using the sulfur hexafluoride (SF6) method. Metabolic acidosis (pH 7.20) and alkalosis (pH 7.60) were induced with HCl and Carbicarb (isosmolar Na2CO3 and NaHCO3), respectively. Hypercapnia was induced by adding inspiratory CO2, whereas pH was allowed to change (respiratory acidosis, pH 7.20) or maintained constant (isolated hypercapnia). Mean intrapulmonary shunt and pulmonary arterial minus wedge pressure difference, respectively, changed from 44 to 33% (P less than 0.05) and from 9 to 10 mmHg (P greater than 0.05) in metabolic acidosis, from 44 to 62% (P less than 0.001) and from 12 to 8 mmHg (P less than 0.01) in metabolic alkalosis, from 40 to 42% (P greater than 0.05) and from 13 to 16 mmHg (P less than 0.05) in respiratory acidosis, from 42 to 52% (P less than 0.05) and from 8 to 12 mmHg (P less than 0.01) in isolated hypercapnia. These results indicate that acidosis, alkalosis, and hypercapnia markedly influence pulmonary gas exchange and/or pulmonary hemodynamics in dogs with oleic acid pulmonary edema.


1986 ◽  
Vol 61 (3) ◽  
pp. 1132-1138 ◽  
Author(s):  
G. J. Huchon ◽  
A. Lipavsky ◽  
J. M. Hoeffel ◽  
J. F. Murray

To determine the accuracy of measurements of lung tissue volume (Vlt) by rebreathing acetylene in normal and edematous lungs, we compared gravimetric values of total lung weight (Ql) and extravascular lung water (Qwl) with Vlt in anesthetized control sheep (C) and sheep with hydrostatic pulmonary edema (HPE) or oleic acid-induced permeability pulmonary edema (PPE), five animals each. In eight additional sheep we determined that acetylene solubility in blood (0.117 +/- 0.010 ml X 100 ml-1 X Torr-1) differed significantly from that in lung-blood homogenates (0.095 +/- 0.009 ml X 100 ml-1 X Torr-1, P = 0.0017). The latter value was used in all calculations. In C, Vlt was 194% of Qwl and 98% of Ql; in HPE, Vlt was 144% of Qwl and 87% of Ql; and in PPE, Vlt was 112% of Qwl and 77% of Ql. We conclude that when the lungs are normal, Vlt reasonably measures Ql not Qwl. However in both HPE and PPE, Vlt progressively underestimates Ql and cannot differentiate between increased blood volume and increased Qwl.


Sign in / Sign up

Export Citation Format

Share Document