Fuzzy logic closed loop system for norepinephrine withdrawal in septic shock using mean arterial pressure

2004 ◽  
Vol 21 (Supplement 32) ◽  
pp. 22
Author(s):  
B. Guignard ◽  
O. Tuil ◽  
Y. Cohen ◽  
F. Lapostolle ◽  
F. Adnet
2004 ◽  
Vol 21 (Supplement 32) ◽  
pp. 19 ◽  
Author(s):  
B. Guignard ◽  
C. Coste ◽  
V. Joly ◽  
P. Alfonsi ◽  
M. Chauvin

1998 ◽  
Vol 89 (Supplement) ◽  
pp. 1218A ◽  
Author(s):  
B. Guignard ◽  
C. Meniguax ◽  
X. Dupont ◽  
M. Chauvin

Author(s):  
Ahmed Jadaan Ali ◽  
Ziyad Farej ◽  
Nashwan Sultan

<p class="Author"><span>It is known that controlling the speed of a three phase Induction Motor (IM) under different operating conditions is an important task and this can be accomplished through the process of controlling the applied voltage on its stator circuit. Conventional Proportional- Integral- Differeantional (PID) controller takes long time in selecting the error signal gain values. In this paper a hybrid Fuzzy Logic Controller (FLC) with Genetic Algorithm (GA) is proposed to reduce the selected time for the optimized error signal gain values and as a result inhances the controller and system performance. The proposed controller FL with GA is designed, modeled and simulated using MATLAB/ software under different load torque motor operating condition. The simulation result shows that the closed loop system performance efficiency under the controller has a maximum value of 95.92%. In terms of efficiency and at reference speed signal of 146.53 rad/sec, this system performance shows an inhancement of 0.67%,0.49% and 0.05% with respect to the closed loop system efficiency performance of the PID, FL, and PID with GA controllers respectively. Also the simulation result of the well designed and efficient GA in speeding up the process of selecting the gain values, makes the system to have an efficiency improvement of 14.42% with respect to the open loop system performance.</span></p>


Author(s):  
Chaojun Yu ◽  
Ju Jiang ◽  
Shuo Wang ◽  
Bing Han

This paper proposes a novel fixed-time adaptive general type-2 fuzzy logical control (FAGT2FLC) scheme for an air-breathing hypersonic vehicle (AHV) with uncertainties. Firstly, the AHV dynamic model is transformed into a strict feedback form. Then, the FAGT2FLC is designed based on the transformed model to improve robustness and guarantee fixed-time convergence of the closed-loop system. The general type-2 fuzzy logic system (GT2FLS) is utilized to approximate the model uncertainties; for the purpose of designing adaptive laws, the [Formula: see text]-plane method is employed to represent the GT2FLS. A parameter projection operator is used to solve the possible singularity problem of parameter adaption. Besides, a fixed-time differentiator is used to deal with the “explosion of terms” inherent in backstepping method. Theoretical analysis based on relevant lemmas shows that the closed-loop system will converge into a small error band in fixed time. Lastly, detailed simulations are carried out to demonstrate the effectiveness and superiority of the proposed control scheme.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1376-P
Author(s):  
GREGORY P. FORLENZA ◽  
BRUCE BUCKINGHAM ◽  
JENNIFER SHERR ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1066-P
Author(s):  
HALIS K. AKTURK ◽  
DOMINIQUE A. GIORDANO ◽  
HAL JOSEPH ◽  
SATISH K. GARG ◽  
JANET K. SNELL-BERGEON

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 207-OR
Author(s):  
BRUCE A. BUCKINGHAM ◽  
JENNIFER SHERR ◽  
GREGORY P. FORLENZA ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document