147. Effects of the renin inhibitor SR 43845 on arterial pressure and the renin-angiotensin system in sodium-depleted normal subjects

1991 ◽  
Vol 9 ◽  
pp. S486
Author(s):  
Jodie Sissmann ◽  
Jean Ribstein ◽  
Catherine Cazaubon ◽  
Albert Mimran
1982 ◽  
Vol 52 (6) ◽  
pp. 1438-1443 ◽  
Author(s):  
P. Escourrou ◽  
P. R. Freund ◽  
L. B. Rowell ◽  
D. G. Johnson

We conducted a two-part study to determine whether the renin-angiotensin system contributes to the rise in splanchnic vascular resistance (SVR) during heat stress (rectal temperature was raised 1 degree C). In experiment 1 (control) seven men on a normal salt diet were directly heated (water-perfused suits) for 40–50 min. Arterial pressure (85 Torr) was unchanged; plasma renin activity (PRA) rose from 102 to 239 ng angiotensin I.100 ml-1.3 h-1; and SVR increased 73% (from 63 to 109 units). Experiment 2 was a repetition of experiment 1 on the same subjects, except that propranolol (10 mg iv) was given at the onset of heating to block renin release. Propranolol attenuated the rise in heart rate and reduced mean arterial pressure from 82 to 72 Torr; it blocked the rise in PRA with heating in two subjects, reduced it in three, but increased it in two. Although changes in SVR paralleled those in PRA in three subjects, SVR still rose 60% (from 58 to 99 units) after PRA rise was blocked. In both experiments, plasma norepinephrine concentration rose indicating increased sympathetic nervous activity. During mild heat stress, increased PRA is not a major factor in the increase of SVR.


Endocrinology ◽  
1981 ◽  
Vol 109 (1) ◽  
pp. 290-295 ◽  
Author(s):  
WAYNE L. FOWLER ◽  
J. ALAN JOHNSON ◽  
KENNETH D. KURZ ◽  
JEANNETTE KILFOIL ◽  
SANDRA LOVE ◽  
...  

1984 ◽  
Vol 246 (1) ◽  
pp. E84-E88
Author(s):  
C. D. Simon ◽  
T. W. Honeyman ◽  
J. C. Fray

The mechanisms whereby the pituitary gland maintains arterial pressure were investigated in rats. The arterial pressure in hypophysectomized rats was 30 mmHg below normal. Saralasin or captopril caused a further fall of 25 and 30 mmHg, respectively, suggesting that the renin-angiotensin system plays a role in blood pressure maintenance in hypophysectomized rats. Growth hormone administration to hypophysectomized rats increased the arterial pressure, but pretreatment with captopril prevented the effect. Plasma renin activity and basal renin secretion (in vitro) was normal in hypophysectomized rats despite a twofold greater renal renin content. Secretory responsiveness to isoproterenol and calcium omission was lower in hypophysectomized rats. It is concluded that the renin-angiotensin system plays a role in maintaining arterial blood pressure in hypophysectomized rats although the responsiveness of the system may be decreased.


1978 ◽  
Vol 55 (s4) ◽  
pp. 319s-321s ◽  
Author(s):  
H. Ibsen ◽  
A. Leth ◽  
H. Hollnagel ◽  
A. M. Kappelgaard ◽  
M. Damkjaer Nielsen ◽  
...  

1. Twenty-five patients with mild essential hypertension, identified during a survey of a population born in 1936, were investigated. 2. Basal and post-frusemide values for plasma renin concentration and plasma angiotensin II concentration did not differ markedly from reference values in 25 40-year-old control subjects. In the untreated, sodium replete state saralasin infusion (5·4 nmol min−1 kg−1) produced an increase in mean arterial pressure in the patient group as a whole. 3. Twenty-one patients were treated with hydrochlorothiazide, mean dose 75 mg/day for 3 months. Pre-treatment, frusemide-stimulated plasma renin concentration and plasma angiotensin II, and values during thiazide treatment were higher in ‘non-responders’ (n = 10) to hydrochlorothiazide treatment than in ‘thiazide-responders’ (n = 11). During thiazide therapy, angiotensin II blockade induced a clear-cut decrease in mean arterial pressure in all ‘thiazide-nonresponders’ whereas only four out of 11 ‘thiazide-responders’ showed a borderline decline in mean arterial pressure. 4. The functional significance of the renin—angiotensin system in mild essential hypertension emerges only after thiazide treatment. Thiazide-induced stimulation of the renin—angiotensin system counter-balanced the hypotensive effect of thiazide in some 40% of the treated patients. Thus the responsiveness of the renin—angiotensin system determined the blood pressure response to thiazide treatment.


2011 ◽  
Vol 89 (12) ◽  
pp. 891-897 ◽  
Author(s):  
Tadeu Uggere de Andrade ◽  
Leonardo Zanoteli Loiola ◽  
Samira Merces Nascimento Alcure ◽  
Ana Raquel Santos Medeiros ◽  
Maria Carmen Lopes Ferreira Silva Santos ◽  
...  

The androgen nandrolone decanoate (ND) is known to cause cardiovascular abnormalities, such as attenuation of the Bezold–Jarisch Reflex (BJR), cardiac hypertrophy, and elevation of mean arterial pressure (MAP). Futhermore, a relationship between androgens and the renin–angiotensin system (RAS) has been reported. The purpose of this study was to evaluate the influence of RAS on the BJR, cardiac and prostatic hypertrophy, and MAP evoked by ND. For this, male Wistar rats were treated with ND (10 mg·(kg body mass)–1 for 8 weeks; DECA), or vehicle (control animals; CON), or enalapril (10 mg·(kg body mass)–1, daily; CONE), or ND and enalapril (10 mg ND + 10 mg enalapril per kilogram of body mass; DECAE). After 8 weeks of treatment, the BJR was evaluated by bradycardia and hypotensive responses that were elicited by serotonin administration (2–32 µg·(kg body mass)–1). MAP was assessed; cardiac and prostate hypertrophy were determined by the ratio of the tissue mass:body mass, and by histological analysis of the heart. Animals from the DECA group showed prostatic and cardiac hypertrophy, elevation in mean arterial pressure, and an impairment of BJR. Co-treatment with enalapril inhibited these changes. The data from the present study suggest that RAS has an impact on BJR attenuation, cardiac and prostatic hypertrophy, and the elevation in MAP evoked by ND.


1993 ◽  
Vol 264 (4) ◽  
pp. R676-R680
Author(s):  
J. P. Valentin ◽  
N. Nafrialdi ◽  
J. Ribstein ◽  
A. Mimran

Atrial natriuretic peptide (ANP) has been shown to promote a fluid shift from the intravascular toward the interstitial compartment and to interact with the renin-angiotensin system at the renal as well as the extrarenal level. In the present studies, the interaction between the renin-angiotensin system and the effects of ANP infusion (100 ng.kg-1 x min-1 for 45 min) on arterial pressure and hematocrit were assessed in bilaterally nephrectomized, anesthetized rats. In a first series of experiments, suppression of angiotensin II generation was achieved by chronic (10 days) treatment by the angiotensin-converting-enzyme inhibitor (ACEI) captopril in rats maintained on a low-sodium diet. ACEI pretreatment prevented the rise in hematocrit associated with ANP infusion (+2.1 +/- 0.1 vs. +5.8 +/- 0.2%, P < 0.05), without influencing the effect of ANP on arterial pressure. In ACEI-pretreated rats, acute administration of angiotensin II at a subpressor dose (2.5 ng.kg-1 x min-1) restored the ANP-induced increase in hematocrit. In a second series of experiments, acute blockade of the renin-angiotensin system was obtained by the ACEI enalaprilat or the nonpeptide angiotensin II receptor antagonist losartan (both 1 mg/kg i.v. bolus). In the presence of either enalaprilat or losartan, the ANP-induced increase in hematocrit was similarly prevented. These results indicate that the effect of ANP on vascular permeability is modulated by endogenous angiotensin II, possibly due to distinct influences of the two peptides at the level of pre- and postcapillary resistances.


Sign in / Sign up

Export Citation Format

Share Document