Visual Evoked Potentials Under Luminance Contrast and Color Contrast Stimulation in Glaucoma Diagnosis

2000 ◽  
Vol 9 (6) ◽  
pp. 428-437 ◽  
Author(s):  
Folkert K. Horn ◽  
Antonio Bergua ◽  
Anselm Jünemann ◽  
Matthias Korth
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Sae Kaneko ◽  
Ichiro Kuriki ◽  
Søren K Andersen

Abstract Colors are represented in the cone-opponent signals, L-M versus S cones, at least up to the level of inputs to the primary visual cortex. We explored the hue selective responses in early cortical visual areas through recordings of steady-state visual evoked potentials (SSVEPs), elicited by a flickering checkerboard whose color smoothly swept around the hue circle defined in a cone-opponent color space. If cone opponency dominates hue representation in the source of SSVEP signals, SSVEP amplitudes as a function of hue should form a profile that is line-symmetric along the cardinal axes of the cone-opponent color space. Observed SSVEP responses were clearly chromatic ones with increased SSVEP amplitudes and reduced response latencies for higher contrast conditions. The overall elliptic amplitude profile was significantly tilted away from the cardinal axes to have the highest amplitudes in the “lime-magenta” direction, indicating that the hue representation in question is not dominated by cone-opponency. The observed SSVEP amplitude hue profile was better described as a summation of a perceptual response and cone-opponent responses with a larger weight to the former. These results indicate that hue representations in the early visual cortex, measured by the SSVEP technique, are possibly related to perceptual color contrast.


2011 ◽  
Vol 28 (3) ◽  
pp. 221-237 ◽  
Author(s):  
BRUCE C. HANSEN ◽  
THEODORE JACQUES ◽  
AARON P. JOHNSON ◽  
DAVE ELLEMBERG

AbstractThe contrast response function of early visual evoked potentials elicited by sinusoidal gratings is known to exhibit characteristic potentials closely associated with the processes of parvocellular and magnocellular pathways. Specifically, the N1 component has been linked with parvocellular processes, while the P1 component has been linked with magnocellular processes. However, little is known regarding the response properties of the N1 and P1 components during the processing and encoding of complex (i.e., broadband) stimuli such as natural scenes. Here, we examine how established physical characteristics of natural scene imagery modulate the N1 and P1 components in humans by providing a systematic investigation of component modulation as visual stimuli are gradually built up from simple sinusoidal gratings to highly complex natural scene imagery. The results suggest that the relative dominance in signal output of the N1 and P1 components is dependent on spatial frequency (SF) luminance contrast for simple stimuli up to natural scene imagery possessing few edges. However, such a dependency shifts to a dominant N1 signal for natural scenes possessing abundant edge content and operates independently of SF luminance contrast.


2005 ◽  
Vol 5 (12) ◽  
pp. 76-76
Author(s):  
Y. Mizokami ◽  
M. A. Crognale

2005 ◽  
Vol 22 (6) ◽  
pp. 735-747 ◽  
Author(s):  
INGER RUDVIN ◽  
ARNE VALBERG

Human visual evoked potentials (VEPs) were recorded for abrupt reversals of 2 cycles/deg (c/deg) square-wave gratings combining high red–green contrast with different levels of luminance contrast. Response characteristics—2nd harmonic amplitudes and peak latencies as a function of luminance contrast—were compared for four different reversal rates ranging from 6.25 Hz to 12.5 Hz. At every reversal frequency, the VEP amplitude and latency plots were nonsymmetrical with respect to isoluminance. The amplitude dropped to a minimum within a region of rapid phase change, always at a red–green luminance contrast for which the green color had the higher luminance, at about 40% or 50% Michelson luminance contrast. The rapid phase shift around this contrast suggested a sudden change in the relative impact of VEP generators with different latencies, possibly dominated by parvocellular or magnocellular input. The most prominent VEP waveform through most of the luminance contrast range, P110, is interpreted in terms of a parvo-mediated response that is attenuated with increasing reversal frequency. Contrast-dependent changes in the P110 amplitude appear to be responsible for the VEP asymmetries reported here.


2005 ◽  
Vol 22 (6) ◽  
pp. 749-758 ◽  
Author(s):  
INGER RUDVIN

Human visual evoked potentials (VEPs) were recorded for abrupt 6.25-Hz reversals of 2 c/deg square-wave gratings combining red–green contrast with different levels of luminance contrast. Response characteristics— amplitudes and peak latencies as a function of luminance contrast—were compared for four different pairs of red–green colors and an isochromatic yellow grating. For each of the red–green color pairs, the plots of VEP amplitudes and latencies were nonsymmetrical with respect to isoluminance. The amplitude dropped to a minimum within a region of rapid phase change, at a different contrast for each color pair but always at a luminance contrast for which the greener color had the higher luminance. When the contrast-response curve for each of the four red–green pairs was modeled by a simple |CL − CM| opponency of L- and M-cone contrast using a fixed CL/CM weighting ratio of about two, there was a close correspondence between the contrast giving a null in the modeled response and that giving a minimum in the VEP amplitude. So for the stimulus parameters applied here, the reversal VEP appeared to be dominated by L/M-opponent response contributions for which the signed CL/CM-cone weighting ratio was close to a value of minus two rather than to a value of minus one, which is characteristic of the psychophysical red–green detection mechanism and representative of CL/CM weighting ratios for precortical cells in the parvocellular pathway.


Sign in / Sign up

Export Citation Format

Share Document