scholarly journals PB1968 TWO NEW MUTATIONS AND MOLECULAR CHARACTERIZATION OF G6PD GENE AMONG THAI CHILDREN WITH G6PD DEFICIENCY

HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 894 ◽  
Author(s):  
C. Traivaree ◽  
B. Boonyawat ◽  
A. Photi-a ◽  
C. Monsereenusorn ◽  
T. Phetthong
2021 ◽  
pp. 1-7
Author(s):  
Jian Gao ◽  
Sheng Lin ◽  
Shiguo Chen ◽  
Qunyan Wu ◽  
Kaifeng Zheng ◽  
...  

<b><i>Background:</i></b> Glucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. This study aimed to characterize the G6PD gene variant distribution in Shenzhen of Guangdong province. <b><i>Methods:</i></b> A total of 33,562 individuals were selected at the hospital for retrospective analysis, of which 1,213 cases with enzymatic activity-confirmed G6PD deficiency were screened for G6PD gene variants. Amplification refractory mutation system PCR was first used to screen the 6 dominant mutants in the Chinese population (c.1376G&#x3e;T, c.1388G&#x3e;A, c.95A&#x3e;G, c.1024C&#x3e;T, c.392G&#x3e;T, and c.871G&#x3e;A). If the 6 hotspot variants were not found, next-generation sequencing was then performed. Finally, Sanger sequencing was used to verify all the mutations. <b><i>Results:</i></b> The incidence of G6PD deficiency in this study was 3.54%. A total of 26 kinds of mutants were found in the coding region, except for c.-8-624T&#x3e;C, which was in the noncoding region. c.1376G&#x3e;T and c.1388G&#x3e;A, both located in exon 12, were the top 2 mutants, accounting for 68.43% of all individuals. The 6 hotspot mutations had a cumulative proportion of 94.02%. <b><i>Conclusions:</i></b> This study provided detailed characteristics of G6PD gene variants in Shenzhen, and the results would be valuable to enrich the knowledge of G6PD deficiency.


2019 ◽  
Vol 08 (02) ◽  
pp. 047-053 ◽  
Author(s):  
Poonam Tripathi ◽  
Sarita Agarwal ◽  
Srinivasan Muthuswamy

AbstractGlucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. It affects approximately 400 million people worldwide. The purpose of this study was to detect the prevalence of G6PD deficiency and G6PD gene mutations in the hospital-based settings in patients referred for suspected G6PD deficiency. A qualitative fluorescent spot test and dichlorophenol-indolphenol (DCIP) test were performed. G6PD-deficient, positive samples were further processed for mutation analysis by Sanger sequencing. Out of 1,069 cases, 95 (8.8%) were detected as G6PD deficient (by DCIP test) and were sent for molecular analysis. The G6PD Mediterranean mutation (563C > T) is the most common variant among G6PD-deficient individuals followed by the Coimbra (592C→T) and Orissa (131C→G) variants. We concluded that all symptomatic patients (anemic or jaundiced) should be investigated for G6PD deficiency. Our findings will inform our population screening approach and help provide better management for G6PD-deficient patients.


Blood ◽  
1993 ◽  
Vol 81 (8) ◽  
pp. 2150-2154 ◽  
Author(s):  
DT Chiu ◽  
L Zuo ◽  
L Chao ◽  
E Chen ◽  
E Louie ◽  
...  

Abstract The underlying DNA changes associated with glucose-6-phosphate dehydrogenase (G6PD)-deficient Asians have not been extensively investigated. To fill this gap, we sequenced the G6PD gene of 43 G6PD- deficient Chinese whose G6PD was well characterized biochemically. DNA samples were obtained from peripheral blood of these individuals for sequencing using a direct polymerase chain reaction (PCR) sequencing procedure. From these 43 samples, we have identified five different types of nucleotide substitutions in the G6PD gene: at cDNA 1388 from G to A (Arg to His); at cDNA 1376 from G to T (Arg to Leu); at cDNA 1024 from C to T (Leu to Phe); at cDNA 392 from G to T (Gly to Val); at cDNA 95 from A to G (His to Arg). These five nucleotide substitutions account for over 83% of our 43 G6PD-deficient samples and these substitutions have not been reported in non-Asians. The substitutions found at cDNA 392 and cDNA 1024 are new findings. The substitutions at cDNA 1376 and 1388 account for over 50% of the 43 samples examined indicating a high prevalence of these two alleles among G6PD-deficient Chinese. Our findings add support to the notion that diverse point mutations may account largely for much of the phenotypic heterogeneity of G6PD deficiency.


Blood ◽  
1992 ◽  
Vol 80 (4) ◽  
pp. 1079-1082 ◽  
Author(s):  
JG Chang ◽  
SS Chiou ◽  
LI Perng ◽  
TC Chen ◽  
TC Liu ◽  
...  

Abstract We have developed a rapid and simple method to diagnose the molecular defects of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Chinese in Taiwan. This method involves the selective amplification of a DNA fragment from human G6PD gene with specific oligonucleotide primers followed by digestion with restriction enzymes that recognize artificially created or naturally occurring restriction sites. Ninety- four Chinese males with G6PD deficiency were studied. The results show that 50% (47 of 94) were G to T mutation at nucleotide (nt) 1376, 21.3% (20 of 94) were G to A mutation at nt 1388, 7.4% (7 of 94) were A to G mutation at nt 493, 7.4% (7 of 94) were A to G mutation at nt 95, 4.2% (4 of 94) were C to T mutation at nt 1024, 1.1% (1 of 94) was G to T mutation at nt 392, and 1.1% (1 of 94) was G to A mutation at nt 487. These results show that the former five mutations account for more than 90% of G6PD deficiency cases in Taiwan. Aside from showing that G to T change at nt 1376 is the most common mutation, our research indicates that nt 493 mutation is a frequent mutation among Chinese in Taiwan. We compared G6PD activity among different mutations, without discovering significant differences between them.


1996 ◽  
Vol 46 (3) ◽  
pp. 172-176 ◽  
Author(s):  
Shahina Daar ◽  
Tom J. Vulliamy ◽  
Jaspal Kaeda ◽  
Philip J. Mason ◽  
Lucio Luzzatto

2004 ◽  
Vol 33 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Anthi Drousiotou ◽  
Elias H Touma ◽  
Nicoletta Andreou ◽  
Jacques Loiselet ◽  
Michalis Angastiniotis ◽  
...  

2020 ◽  
Author(s):  
Amkha Sanephonasa ◽  
Chalisa Louicharoen Cheepsunthorn ◽  
Naly Khaminsou ◽  
Onekham Savongsy ◽  
Issarang Nuchprayoon ◽  
...  

Abstract Background: The prevalence and genotypes of G6PD deficiency vary worldwide, with higher prevalence in malaria endemic areas. The first time assessment of G6PD deficiency prevalence and molecular characterization of G6PD mutations in the Lao Theung population were performed in this study. Methods: A total of 252 unrelated Lao Theung participants residing in the Lao People's Democratic Republic (PDR) were recruited. All participant samples were tested for G6PD enzyme activity and G6PD gene mutations. The amplification refractory mutation system (ARMS)-PCR for detecting G6PD Aures was developed.Results: The G6PD mutations were detected in 11.51% (29/252) of the participants. Eight G6PD mutations were detected. The G6PD Aures was the most common mutation identified in this cohort, which represented 58.62 % (17/29) of all mutation. The mutation pattern was homogenous, predominantly involving the G6PD Aures mutation (6.75%), followed by 1.19% G6PD Union and 0.79% each G6PD Jammu, G6PD Mahidol and G6PD Kaiping. One subject (0.4%) each carried G6PD Viangchan and G6PD Canton. Interestingly, one case of coinheritance of G6PD Aures and Quing Yan was detected in this cohort. Based on levels of G6PD enzyme activity, the prevalence of G6PD deficiency in the Lao Theung population was 9.13 % (23/252). The prevalence of G6PD deficient males and females (activity < 30 %) in the Lao Theung population was 6.41 % (5/78) and 1.72 % (3/174), respectively, and the prevalence of G6PD intermediate (activity 30-70 %) was 5.95 % (15/252).Conclusion: The G6PD Aures mutation is highly prevalent in the Lao Theung ethnic group. The common G6PD variants in continental Southeast Asian populations, G6PD Viangchan, Canton, Kaiping, Union and Mahidol, were not prevalent in this ethnic group. The technical simplicity of the developed ARMS-PCR will facilitate the final diagnosis of the G6PD Aures.


2021 ◽  
Author(s):  
Amkha Sanephonasa ◽  
Chalisa Louicharoen Cheepsunthorn ◽  
Naly Khaminsou ◽  
Onekham Savongsy ◽  
Issarang Nuchprayoon ◽  
...  

Abstract Background The prevalence and genotypes of G6PD deficiency vary worldwide, with higher prevalence in malaria endemic areas. The first-time assessment of G6PD deficiency prevalence and molecular characterization of G6PD mutations in the Lao Theung population were performed in this study. Methods A total of 252 unrelated Lao Theung participants residing in the Lao People's Democratic Republic (PDR) were recruited. All participant samples were tested for G6PD enzyme activity and G6PD gene mutations. The amplification refractory mutation system (ARMS)-PCR for detecting G6PD Aures was developed.Results The G6PD mutations were detected in 11.51% (29/252) of the participants. Eight G6PD mutations were detected. The G6PD Aures was the most common mutation identified in this cohort, which represented 58.62 % (17/29) of all mutation. The mutation pattern was homogenous, predominantly involving the G6PD Aures mutation (6.75%), followed by 1.19% G6PD Union and 0.79% each G6PD Jammu, G6PD Mahidol and G6PD Kaiping. One subject (0.4%) each carried G6PD Viangchan and G6PD Canton. Interestingly, one case of coinheritance of G6PD Aures and Quing Yan was detected in this cohort. Based on levels of G6PD enzyme activity, the prevalence of G6PD deficiency in the Lao Theung population was 9.13 % (23/252). The prevalence of G6PD deficient males and females (activity < 30 %) in the Lao Theung population was 6.41 % (5/78) and 1.72 % (3/174), respectively, and the prevalence of G6PD intermediate (activity 30-70 %) was 5.95 % (15/252).Conclusion The G6PD Aures mutation is highly prevalent in the Lao Theung ethnic group. The common G6PD variants in continental Southeast Asian populations, G6PD Viangchan, Canton, Kaiping, Union and Mahidol, were not prevalent in this ethnic group. The technical simplicity of the developed ARMS-PCR will facilitate the final diagnosis of the G6PD Aures.


Sign in / Sign up

Export Citation Format

Share Document