Value of FDG PET Imaging in the Management of Patients With Thyroid, Neuroendocrine, and Neural Crest Tumors

2004 ◽  
Vol 29 (2) ◽  
pp. 86-90 ◽  
Author(s):  
Daniel R. Scanga ◽  
William H. Martin ◽  
Dominique Delbeke
2017 ◽  
Vol 06 (01) ◽  
pp. 031-034
Author(s):  
Soumyakanti Kundu ◽  
Purushottam Kand ◽  
Sandip Basu

Abstract Background: 18-Fluorodeoxyglucose positron emission tomography (FDG-PET) has established a role in the evaluation of several malignancies. However, its precise clinical role in the neural crest cell tumors continues to evolve. Purpose: The purpose of this study was to compare iodine-131 metaiodobenzylguanidine (131I-MIBG) and FDG-PET of head to head in patients with neural crest tumors both qualitatively and semiquantitatively and to determine their clinical utility in disease status evaluation and further management. Materials and Methods: A total of 32 patients who had undergone 131I-MIBG and FDG-PET prospectively were evaluated and clinicopathologically grouped into three categories: neuroblastoma, pheochromocytoma, and medullary carcinoma thyroid. Results: In 18 patients of neuroblastoma, FDG PET and 131I-MIBG showed patient-specific sensitivity of 84% and 72%, respectively. The mean maximum standardized uptake value (SUVmax) of primary lesions in patients with unfavorable histology was found to be relatively higher than those with favorable histology (5.18 ± 2.38 vs. 3.21 ± 1.69). The mean SUVmaxof two common sites (posterior superior iliac spine [PSIS] and greater trochanter) was higher in patients with involved marrow than those with uninvolved one (2.36 and 2.75 vs. 1.26 and 1.34, respectively). The ratio of SUVmaxof the involved/contralateral normal sites was 2.16 ± 1.9. In equivocal bone marrow results, the uptake pattern with SUV estimation can depict metastatic involvement and help in redirecting the biopsy site. Among seven patients of pheochromocytoma, FDG-PET revealed 100% patient-specific sensitivity. FDG-PET detected more metastatic foci than 131I-MIBG (18 vs. 13 sites). In seven patients of medullary carcinoma thyroid, FDG-PET localized residual, recurrent, or metastatic disease with much higher sensitivity (32 metastatic foci with 72% patient specific sensitivity) than 131I-MIBG, trending along the higher serum calcitonin levels. Conclusions: FDG-PET is not only a good complementary modality in the management of neural crest cell tumors but also it can even be superior, especially in cases of 131I-MIBG nonavid tumors.


2018 ◽  
Vol 15 (13) ◽  
pp. 1267-1275 ◽  
Author(s):  
F.E. Reesink ◽  
D. Vállez García ◽  
C.A. Sánchez-Catasús ◽  
D.E. Peretti ◽  
A.T. Willemsen ◽  
...  

Background: We describe the phenomenon of crossed cerebellar diaschisis (CCD) in four subjects diagnosed with Alzheimer’s disease (AD) according to the National Institute on Aging - Alzheimer Association (NIA-AA) criteria, in combination with 18F-FDG PET and 11C-PiB PET imaging. Methods: 18F-FDG PET showed a pattern of cerebral metabolism with relative decrease most prominent in the frontal-parietal cortex of the left hemisphere and crossed hypometabolism of the right cerebellum. 11C-PiB PET showed symmetrical amyloid accumulation, but a lower relative tracer delivery (a surrogate of relative cerebral blood flow) in the left hemisphere. CCD is the phenomenon of unilateral cerebellar hypometabolism as a remote effect of supratentorial dysfunction of the brain in the contralateral hemisphere. The mechanism implies the involvement of the cortico-ponto-cerebellar fibers. The pathophysiology is thought to have a functional or reversible basis but can also reflect in secondary morphologic change. CCD is a well-recognized phenomenon, since the development of new imaging techniques, although scarcely described in neurodegenerative dementias. Results: To our knowledge this is the first report describing CCD in AD subjects with documentation of both 18F-FDG PET and 11C-PiB PET imaging. CCD in our subjects was explained on a functional basis due to neurodegenerative pathology in the left hemisphere. There was no structural lesion and the symmetric amyloid accumulation did not correspond with the unilateral metabolic impairment. Conclusion: This suggests that CCD might be caused by non-amyloid neurodegeneration. The pathophysiological mechanism, clinical relevance and therapeutic implications of CCD and the role of the cerebellum in AD need further investigation.


2021 ◽  
Vol 16 (9) ◽  
pp. 2774-2779
Author(s):  
Satoshi Suzuki ◽  
Ryo Kurokawa ◽  
Tetsushi Tsuruga ◽  
Mayuyo Mori‑Uchino ◽  
Haruka Nishida ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Breton M. Asken ◽  
Gil D. Rabinovici

Abstract Background and Scope of Review Varying severities and frequencies of head trauma may result in dynamic acute and chronic pathophysiologic responses in the brain. Heightened attention to long-term effects of head trauma, particularly repetitive head trauma, has sparked recent efforts to identify neuroimaging biomarkers of underlying disease processes. Imaging modalities like structural magnetic resonance imaging (MRI) and positron emission tomography (PET) are the most clinically applicable given their use in neurodegenerative disease diagnosis and differentiation. In recent years, researchers have targeted repetitive head trauma cohorts in hopes of identifying in vivo biomarkers for underlying biologic changes that might ultimately improve diagnosis of chronic traumatic encephalopathy (CTE) in living persons. These populations most often include collision sport athletes (e.g., American football, boxing) and military veterans with repetitive low-level blast exposure. We provide a clinically-oriented review of neuroimaging data from repetitive head trauma cohorts based on structural MRI, FDG-PET, Aβ-PET, and tau-PET. We supplement the review with two patient reports of neuropathology-confirmed, clinically impaired adults with prior repetitive head trauma who underwent structural MRI, FDG-PET, Aβ-PET, and tau-PET in addition to comprehensive clinical examinations before death. Review Conclusions Group-level comparisons to controls without known head trauma have revealed inconsistent regional volume differences, with possible propensity for medial temporal, limbic, and subcortical (thalamus, corpus callosum) structures. Greater frequency and severity (i.e., length) of cavum septum pellucidum (CSP) is observed in repetitive head trauma cohorts compared to unexposed controls. It remains unclear whether CSP predicts a particular neurodegenerative process, but CSP presence should increase suspicion that clinical impairment is at least partly attributable to the individual’s head trauma exposure (regardless of underlying disease). PET imaging similarly has not revealed a prototypical metabolic or molecular pattern associated with repetitive head trauma or predictive of CTE based on the most widely studied radiotracers. Given the range of clinical syndromes and neurodegenerative pathologies observed in a subset of adults with prior repetitive head trauma, structural MRI and PET imaging may still be useful for differential diagnosis (e.g., assessing suspected Alzheimer’s disease).


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amy J. Weisman ◽  
Jihyun Kim ◽  
Inki Lee ◽  
Kathleen M. McCarten ◽  
Sandy Kessel ◽  
...  

Abstract Purpose For pediatric lymphoma, quantitative FDG PET/CT imaging features such as metabolic tumor volume (MTV) are important for prognosis and risk stratification strategies. However, feature extraction is difficult and time-consuming in cases of high disease burden. The purpose of this study was to fully automate the measurement of PET imaging features in PET/CT images of pediatric lymphoma. Methods 18F-FDG PET/CT baseline images of 100 pediatric Hodgkin lymphoma patients were retrospectively analyzed. Two nuclear medicine physicians identified and segmented FDG avid disease using PET thresholding methods. Both PET and CT images were used as inputs to a three-dimensional patch-based, multi-resolution pathway convolutional neural network architecture, DeepMedic. The model was trained to replicate physician segmentations using an ensemble of three networks trained with 5-fold cross-validation. The maximum SUV (SUVmax), MTV, total lesion glycolysis (TLG), surface-area-to-volume ratio (SA/MTV), and a measure of disease spread (Dmaxpatient) were extracted from the model output. Pearson’s correlation coefficient and relative percent differences were calculated between automated and physician-extracted features. Results Median Dice similarity coefficient of patient contours between automated and physician contours was 0.86 (IQR 0.78–0.91). Automated SUVmax values matched exactly the physician determined values in 81/100 cases, with Pearson’s correlation coefficient (R) of 0.95. Automated MTV was strongly correlated with physician MTV (R = 0.88), though it was slightly underestimated with a median (IQR) relative difference of − 4.3% (− 10.0–5.7%). Agreement of TLG was excellent (R = 0.94), with median (IQR) relative difference of − 0.4% (− 5.2–7.0%). Median relative percent differences were 6.8% (R = 0.91; IQR 1.6–4.3%) for SA/MTV, and 4.5% (R = 0.51; IQR − 7.5–40.9%) for Dmaxpatient, which was the most difficult feature to quantify automatically. Conclusions An automated method using an ensemble of multi-resolution pathway 3D CNNs was able to quantify PET imaging features of lymphoma on baseline FDG PET/CT images with excellent agreement to reference physician PET segmentation. Automated methods with faster throughput for PET quantitation, such as MTV and TLG, show promise in more accessible clinical and research applications.


2015 ◽  
Vol 42 (2) ◽  
pp. 85-91 ◽  
Author(s):  
Su-Jin Cheong ◽  
Chang-Moon Lee ◽  
Eun-Mi Kim ◽  
Seok Tae Lim ◽  
Myung-Hee Sohn ◽  
...  
Keyword(s):  
Fdg Pet ◽  
Ppar Γ ◽  

2006 ◽  
Vol 31 (6) ◽  
pp. 345-346 ◽  
Author(s):  
Naoto Watanabe ◽  
Hiroshi Kato ◽  
Masashi Shimizu ◽  
Jun Murakami ◽  
Hideto Kawabe ◽  
...  

2003 ◽  
Vol 28 (8) ◽  
pp. 677-679 ◽  
Author(s):  
Madhusudhan P. Reddy ◽  
Praveen Reddy ◽  
David L. Lilien

Sign in / Sign up

Export Citation Format

Share Document