Changes in Stroke Volume Induced by Lung Recruitment Maneuver Predict Fluid Responsiveness in Mechanically Ventilated Patients in the Operating Room

2017 ◽  
Vol 126 (2) ◽  
pp. 260-267 ◽  
Author(s):  
Matthieu Biais ◽  
Romain Lanchon ◽  
Musa Sesay ◽  
Lisa Le Gall ◽  
Bruno Pereira ◽  
...  

Abstract Background Lung recruitment maneuver induces a decrease in stroke volume, which is more pronounced in hypovolemic patients. The authors hypothesized that the magnitude of stroke volume reduction through lung recruitment maneuver could predict preload responsiveness. Methods Twenty-eight mechanically ventilated patients with low tidal volume during general anesthesia were included. Heart rate, mean arterial pressure, stroke volume, and pulse pressure variations were recorded before lung recruitment maneuver (application of continuous positive airway pressure of 30 cm H2O for 30 s), during lung recruitment maneuver when stroke volume reached its minimal value, and before and after volume expansion (250 ml saline, 0.9%, infused during 10 min). Patients were considered as responders to fluid administration if stroke volume increased greater than or equal to 10%. Results Sixteen patients were responders. Lung recruitment maneuver induced a significant decrease in mean arterial pressure and stroke volume in both responders and nonresponders. Changes in stroke volume induced by lung recruitment maneuver were correlated with those induced by volume expansion (r2 = 0.56; P < 0.0001). A 30% decrease in stroke volume during lung recruitment maneuver predicted fluid responsiveness with a sensitivity of 88% (95% CI, 62 to 98) and a specificity of 92% (95% CI, 62 to 99). Pulse pressure variations more than 6% before lung recruitment maneuver discriminated responders with a sensitivity of 69% (95% CI, 41 to 89) and a specificity of 75% (95% CI, 42 to 95). The area under receiver operating curves generated for changes in stroke volume induced by lung recruitment maneuver (0.96; 95% CI, 0.81 to 0.99) was significantly higher than that for pulse pressure variations (0.72; 95% CI, 0.52 to 0.88; P < 0.05). Conclusions The authors’ study suggests that the magnitude of stroke volume decrease during lung recruitment maneuver could predict preload responsiveness in mechanically ventilated patients in the operating room.

2017 ◽  
Vol 127 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Matthieu Biais ◽  
Hugues de Courson ◽  
Romain Lanchon ◽  
Bruno Pereira ◽  
Guillaume Bardonneau ◽  
...  

Abstract Background Mini-fluid challenge of 100 ml colloids is thought to predict the effects of larger amounts of fluid (500 ml) in intensive care units. This study sought to determine whether a low quantity of crystalloid (50 and 100 ml) could predict the effects of 250 ml crystalloid in mechanically ventilated patients in the operating room. Methods A total of 44 mechanically ventilated patients undergoing neurosurgery were included. Volume expansion (250 ml saline 0.9%) was given to maximize cardiac output during surgery. Stroke volume index (monitored using pulse contour analysis) and pulse pressure variations were recorded before and after 50 ml infusion (given for 1 min), after another 50 ml infusion (given for 1 min), and finally after 150 ml infusion (total = 250 ml). Changes in stroke volume index induced by 50, 100, and 250 ml were recorded. Positive fluid challenges were defined as an increase in stroke volume index of 10% or more from baseline after 250 ml. Results A total of 88 fluid challenges were performed (32% of positive fluid challenges). Changes in stroke volume index induced by 100 ml greater than 6% (gray zone between 4 and 7%, including 19% of patients) predicted fluid responsiveness with a sensitivity of 93% (95% CI, 77 to 99%) and a specificity of 85% (95% CI, 73 to 93%). The area under the receiver operating curve of changes in stroke volume index induced by 100 ml was 0.95 (95% CI, 0.90 to 0.99) and was higher than those of changes in stroke volume index induced by 50 ml (0.83 [95% CI, 0.75 to 0.92]; P = 0.01) and pulse pressure variations (0.65 [95% CI, 0.53 to 0.78]; P < 0.005). Conclusions Changes in stroke volume index induced by rapid infusion of 100 ml crystalloid predicted the effects of 250 ml crystalloid in patients ventilated mechanically in the operating room.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Sylvain Vallier ◽  
Jean-Baptiste Bouchet ◽  
Olivier Desebbe ◽  
Camille Francou ◽  
Darren Raphael ◽  
...  

Abstract Objective Assessment of fluid responsiveness is problematic in intensive care unit patients. Lung recruitment maneuvers (LRM) can be used as a functional test to predict fluid responsiveness. We propose a new test to predict fluid responsiveness in mechanically ventilated patients by analyzing the variations in central venous pressure (CVP) and systemic arterial parameters during a prolonged sigh breath LRM without the use of a cardiac output measuring device. Design Prospective observational cohort study. Setting Intensive Care Unit, Saint-Etienne University Central Hospital. Patients Patients under mechanical ventilation, equipped with invasive arterial blood pressure, CVP, pulse contour analysis (PICCO™), requiring volume expansion, with no right ventricular dysfunction. Interventions. None. Measurements and main results CVP, systemic arterial parameters and stroke volume (SV) were recorded during prolonged LRM followed by a 500 mL fluid expansion to asses fluid responsiveness. 25 patients were screened and 18 patients analyzed. 9 patients were responders to volume expansion and 9 were not. Evaluation of hemodynamic parameters suggested the use of a linear regression model. Slopes for systolic arterial pressure, pulse pressure (PP), CVP and SV were all significantly different between responders and non-responders during the pressure increase phase of LRM (STEP-UP) (p = 0.022, p = 0.014, p = 0.006 and p = 0.038, respectively). PP and CVP slopes during STEP-UP were strongly predictive of fluid responsiveness with an AUC of 0.926 (95% CI, 0.78 to 1.00), sensitivity = 100%, specificity = 89% and an AUC = 0.901 (95% CI, 0.76 to 1.00), sensibility = 78%, specificity = 100%, respectively. Combining sensitivity of PP and specificity of CVP, prediction of fluid responsiveness can be achieved with 100% sensitivity and 100% specificity (AUC = 0.96; 95% CI, 0.90 to 1.00). One patient showed inconclusive values using the grey zone approach (5.5%). Conclusions In patients under mechanical ventilation with no right heart dysfunction, the association of PP and CVP slope analysis during a prolonged sigh breath LRM seems to offer a very promising method for prediction of fluid responsiveness without the use and associated cost of a cardiac output measurement device. Trial registration NCT04304521, IRBN902018/CHUSTE. Registered 11 March 2020, Fluid responsiveness predicted by a stepwise PEEP elevation recruitment maneuver in mechanically ventilated patients (STEP-PEEP)


2009 ◽  
Vol 110 (5) ◽  
pp. 1092-1097 ◽  
Author(s):  
Daniel De Backer ◽  
Fabio Silvio Taccone ◽  
Roland Holsten ◽  
Fayssal Ibrahimi ◽  
Jean-Louis Vincent

Background Heart-lung interactions are used to evaluate fluid responsiveness in mechanically ventilated patients, but these indices may be influenced by ventilatory conditions. The authors evaluated the impact of respiratory rate (RR) on indices of fluid responsiveness in mechanically ventilated patients, hypothesizing that pulse pressure variation and respiratory variation in aortic flow would decrease at high RRs. Methods In 17 hypovolemic patients, thermodilution cardiac output and indices of fluid responsiveness were measured at a low RR (14-16 breaths/min) and at the highest RR (30 or 40 breaths/min) achievable without altering tidal volume or inspiratory/expiratory ratio. Results An increase in RR was accompanied by a decrease in pulse pressure variation from 21% (18-31%) to 4% (0-6%) (P < 0.01) and in respiratory variation in aortic flow from 23% (18-28%) to 6% (5-8%) (P < 0.01), whereas respiratory variations in superior vena cava diameter (caval index) were unaltered, i.e., from 38% (27-43%) to 32% (22-39%), P = not significant. Cardiac index was not affected by the changes in RR but did increase after fluids. Pulse pressure variation became negligible when the ratio between heart rate and RR decreased below 3.6. Conclusions Respiratory variations in stroke volume and its derivates are affected by RR, but caval index was unaffected. This suggests that right and left indices of ventricular preload variation are dissociated. At high RRs, the ability to predict the response to fluids of stroke volume variations and its derivate may be limited, whereas caval index can still be used.


2020 ◽  
Author(s):  
Sylvain VALLIER ◽  
Jean-Baptiste BOUCHET ◽  
Olivier DESEBBE ◽  
Camille FRANCOU ◽  
Darren RAPHAEL ◽  
...  

Abstract Objective:Assessment of fluid responsiveness is problematic in intensive care unit patients. Lung recruitment maneuvers (LRM) can be used as a functional test to predict fluid responsiveness. We propose a new test to predict fluid responsiveness in mechanically ventilated patients, analyzing the variations of central venous pressure (CVP) and systemic arterial parameters during a prolonged sigh breath LRM without the use of a cardiac output measuring device. Design:Prospective observational cohort study.Setting:Intensive Care Unit, Saint-Etienne University Central Hospital.Patients:Patients under mechanical ventilation, equipped with invasive arterial blood pressure, CVP, pulse contour analysis (PICCOTM), requiring volume expansion, with no right ventricular dysfunction.Interventions:None.Measurements and Main Results:CVP, systemic arterial parameters and stroke volume (SV) were recorded during prolonged LRM followed by a 500mL fluid expansion to asses fluid responsiveness. 25 patients were screened, 18 patients were analyzed. 9 patients were responders to volume expansion and 9 were not. Evaluation of hemodynamics parameters suggested the use of a linear interpolation model. Slopes for systolic aortic pressure, pulse pressure (PP), CVP and SV were all significantly different between responders and non-responders during pressure increase phase of LRM (STEP-UP) (p = 0.022, p = 0.014, p= 0.006 and p = 0.038, respectively). PP and CVP slopes during STEP-UP were strongly predictive of fluid responsiveness with an AUC of 0.926 (95% CI, 0.78 to 1.00), sensitivity = 100%, specificity = 89% and an AUC = 0.901 (95% CI, 0.76 to 1.00), sensibility = 78%, specificity = 100%, respectively. Combining sensitivity of PP and specificity of CVP, fluid responsiveness prediction can be obtained with 100% sensibility and 100% specificity (AUC=0.96; 95% CI, 0.90 to 1.00). 1 patient presented inconclusive values using the grey zone approach (5.5%).Conclusions:In patients under mechanical ventilation with no right cardiac dysfunction, the association of PP and CVP slope analysis during a prolonged sigh breath lung recruitment maneuver seems to offer a very promising method for fluid responsiveness prediction without the use and cost of a cardiac output measurement device.Trial registration: NCT04304521, IRBN902018/CHUSTERegistered 11 March 2020, Fluid responsiveness predicted by a stepwise PEEP elevation recruitment maneuver in mechanically ventilated patients (STEP-PEEP)https://www.clinicaltrials.gov/ct2/show/NCT04304521?term=NCT04304521&cntry=FR&draw=2&rank=1


Sign in / Sign up

Export Citation Format

Share Document