Use of Neuromuscular Electrical Stimulation for Abdominal and Quadriceps Muscle Strengthening

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Leah K. Spring ◽  
Kathleen Petrell ◽  
Joaninha Depina ◽  
Jeffrey S. Dover
2020 ◽  
Vol 28 (4) ◽  
pp. 339-350
Author(s):  
Gökhan Umutlu ◽  
Nevzat Demirci ◽  
Nasuh Evrim Acar

BACKGROUND: Neuromuscular electrical stimulation (NMES) is a complementary tool for therapeutic exercise for muscle strengthening and may potentially enhance exercise performance. OBJECTIVE: To determine whether high-intensity interval training (HIIT) and continuous aerobic training (CA) coupled with NMES enhance the changes in the eccentric/concentric muscle contraction patterns of hamstring and quadriceps. METHODS: Forty-five healthy sedentary male participants performed cycling training 3 times per week for 8 weeks combined with/without NMES performed at a load equivalent to 65% and 120% of IVO2max (intensity associated with the achievement of maximal oxygen uptake). Anthropometrics, blood lactate measurements, IVO2max, TLimVO2max (time-to-exhaustion) and isokinetic strength parameters were measured at baseline and post-training using a randomized controlled trial. RESULTS: The conventional hamstring-to-quadriceps-ratio (HQR: Hcon/Qcon) at 60∘/s and the Dynamic Control Ratio (DCR: Hecc/Qcon) at 180∘/s significantly increased both in the dominant (D) and non-dominant (ND) limb in the HIIT + NMES group (p< 0.05). There was a positive significant correlation between the individual changes in D HQR at 60∘/s and IVO2max (r= 0.94, p= 0.005) and the DCR at 180∘/s and TLimVO2max (r= 0.90, p= 0.015), respectively. CONCLUSIONS: The increases in the eccentric muscle contraction and DCR following HIIT + NMES seem to improve fatigue tolerance, cause less fatigue and oxidative stress on the lower limb during pedaling at high intensities.


2012 ◽  
Vol 92 (9) ◽  
pp. 1187-1196 ◽  
Author(s):  
Jennifer E. Stevens-Lapsley ◽  
Jaclyn E. Balter ◽  
Pamela Wolfe ◽  
Donald G. Eckhoff ◽  
Robert S. Schwartz ◽  
...  

BackgroundNeuromuscular electrical stimulation (NMES) can facilitate the recovery of quadriceps muscle strength after total knee arthroplasty (TKA), yet the optimal intensity (dosage) of NMES and its effect on strength after TKA have yet to be determined.ObjectiveThe primary objective of this study was to determine whether the intensity of NMES application was related to the recovery of quadriceps muscle strength early after TKA. A secondary objective was to quantify quadriceps muscle fatigue and activation immediately after NMES to guide decisions about the timing of NMES during rehabilitation sessions.DesignThis study was an observational experimental investigation.MethodsData were collected from 30 people who were 50 to 85 years of age and who received NMES after TKA. These people participated in a randomized controlled trial in which they received either standard rehabilitation or standard rehabilitation plus NMES to the quadriceps muscle to mitigate strength loss. For the NMES intervention group, NMES was applied 2 times per day at the maximal tolerable intensity for 15 contractions beginning 48 hours after surgery over the first 6 weeks after TKA. Neuromuscular electrical stimulation training intensity and quadriceps muscle strength and activation were assessed before surgery and 3.5 and 6.5 weeks after TKA.ResultsAt 3.5 weeks, there was a significant association between NMES training intensity and a change in quadriceps muscle strength (R2=.68) and activation (R2=.22). At 6.5 weeks, NMES training intensity was related to a change in strength (R2=.25) but not to a change in activation (R2=.00). Furthermore, quadriceps muscle fatigue occurred during NMES sessions at 3.5 and 6.5 weeks, whereas quadriceps muscle activation did not change.LimitationsSome participants reached the maximal stimulator output during at least 1 treatment session and might have tolerated more stimulation.ConclusionsHigher NMES training intensities were associated with greater quadriceps muscle strength and activation after TKA.


Sign in / Sign up

Export Citation Format

Share Document