scholarly journals Cardiac gene therapy with adeno-associated virus-based vectors

2017 ◽  
Vol 32 (3) ◽  
pp. 275-282 ◽  
Author(s):  
Kyle Chamberlain ◽  
Jalish M. Riyad ◽  
Thomas Weber
2018 ◽  
Vol 29 (12) ◽  
pp. 1341-1351 ◽  
Author(s):  
Tilman Ziegler ◽  
Kiyotake Ishikawa ◽  
Rabea Hinkel ◽  
Christian Kupatt

2018 ◽  
Vol 27 (11) ◽  
pp. 1270-1273
Author(s):  
Cindy Y. Kok ◽  
Ian Alexander ◽  
Leszek Lisowski ◽  
Eddy Kizana

2014 ◽  
Vol 14 (2) ◽  
pp. 86-100 ◽  
Author(s):  
Balaji Balakrishnan ◽  
Giridhara Jayandharan

2017 ◽  
Vol 17 (3) ◽  
Author(s):  
Giedrius Kalesnykas ◽  
Emmi Kokki ◽  
Laura Alasaarela ◽  
Hanna P. Lesch ◽  
Timo Tuulos ◽  
...  

2020 ◽  
Vol 20 ◽  
Author(s):  
Weihong Qu ◽  
Jianguo Zhao ◽  
Yaqing Wu ◽  
Ruian Xu ◽  
Shaowu Liu

Background:: Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure although gene therapy may be a promising future alter-native. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgen-ic expression. Objective:: The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. Method:: The subcutaneous xenograft mode were induced by subcutaneous injection of 2×106 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single-stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9)by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 stain-ing to evaluate tumor angiogenesis. Results:: Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. Conclusion:: The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and impli-cate rAAV9-Kal as a candidate for gene therapy of lung cancer.


Author(s):  
Jared S. Bee ◽  
Kristin O'Berry ◽  
Yu (Zoe) Zhang ◽  
Megan Kuhn Phillippi ◽  
Akanksha Kaushal ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 704
Author(s):  
Qian Yu ◽  
Pengfei Chang ◽  
Xiaoxuan Liu ◽  
Peng Lü ◽  
Qi Tang ◽  
...  

Recombinant adeno-associated virus (AAV) vectors have broad application prospects in the field of gene therapy. The establishment of low-cost and large-scale manufacturing is now the general agenda for industry. The baculovirus-insect cell/larva expression system has great potential for these applications due to its scalability and predictable biosafety. To establish a more efficient production system, Bombyx mori pupae were used as a new platform and infected with recombinant Bombyx mori nuclear polyhedrosis virus (BmNPV). The production of a chimeric recombinant adeno-associated virus (rAAV) serotype 2/human bocavirus type-1 (HBoV1) vector was used to evaluate the efficiency of this new baculovirus expression vector (BEV)–insect expression system. For this purpose, we constructed two recombinant BmNPVs, which were named rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP. The yields of rAAV2/HBoV1 derived from the rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP co-infected BmN cells exceeded 2 × 104 vector genomes (VG) per cell. The rBmNPV/AAV2Rep-HBoV1Cap and rBmNPV/AAV2ITR-eGFP can express stably for at least five passages. Significantly, rAAV2/HBoV1 could be efficiently generated from BmNPV-infected silkworm larvae and pupae at average yields of 2.52 × 1012 VG/larva and 4.6 × 1012 VG/pupa, respectively. However, the vectors produced from the larvae and pupae had a high percentage of empty particles, which suggests that further optimization is required for this platform in the future. Our work shows that silkworm pupae, as an efficient bioreactor, have great potential for application in the production of gene therapy vectors.


Sign in / Sign up

Export Citation Format

Share Document